로그인

검색

자료
2010.09.14 16:43

Introduction to Temperature Controllers

조회 수 794 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
How do Temperature Controllers work?
To accurately control process temperature without extensive operator involvement, a temperature control system relies upon a controller, which accepts a temperature sensor such as a thermocouple or RTD as input. It compares the actual temperature to the desired control temperature, or setpoint, and provides an output to a control element. The controller is one part of the entire control system, and the whole system should be analyzed in selecting the proper controller. The following items should be considered when selecting a controller:
  1. Type of input sensor (thermocouple, RTD) and temperature range
  2. Type of output required (electromechanical relay, SSR, analog output)
  3. Control algorithm needed (on/off, proportional, PID)
  4. Number and type of outputs (heat, cool, alarm, limit)
  5. What Are the Different Types of Controllers, and How Do They Work?
    There are three basic types of controllers: on-off, proportional and PID. Depending upon the system to be controlled, the operator will be able to use one type or another to control the process.

    On/Off Control
    An on-off controller is the simplest form of temperature control device. The output from the device is either on or off, with no middle state. An on-off controller will switch the output only when the temperature crosses the setpoint. For heating control, the output is on when the temperature is below the setpoint, and off above setpoint. Since the temperature crosses the setpoint to change the output state, the process temperature will be cycling continually, going from below setpoint to above, and back below. In cases where this cycling occurs rapidly, and to prevent damage to contactors and valves, an on-off differential, or “hysteresis,” is added to the controller operations. This differential requires that the temperature exceed setpoint by a certain amount before the output will turn off or on again. On-off differential prevents the output from “chattering” or making fast, continual switches if the cycling above and below the setpoint occurs very rapidly. On-off control is usually used where a precise control is not necessary, in systems which cannot handle having the energy turned on and off frequently, where the mass of the system is so great that temperatures change extremely slowly, or for a temperature alarm. One special type of on-off control used for alarm is a limit controller. This controller uses a latching relay, which must be manually reset, and is used to shut down a process when a certain temperature is reached.

    Proportional Control
    Proportional controls are designed to eliminate the cycling associated with on-off control. A proportional controller decreases the average power supplied to the heater as the temperature approaches setpoint. This has the effect of slowing down the heater so that it will not overshoot the setpoint, but will approach the setpoint and maintain a stable temperature. This proportioning action can be accomplished by turning the output on and off for short time intervals. This "time proportioning" varies the ratio of “on” time to "off" time to control the temperature. The proportioning action occurs within a “proportional band” around the setpoint temperature. Outside this band, the controller functions as an on-off unit, with the output either fully on (below the band) or fully off (above the band). However, within the band, the output is turned on and off in the ratio of the measurement difference from the setpoint. At the setpoint (the midpoint of the proportional band), the output on:off ratio is 1:1; that is, the on-time and off-time are equal. if the temperature is further from the setpoint, the on- and off-times vary in proportion to the temperature difference. If the temperature is below setpoint, the output will be on longer; if the temperature is too high, the output will be off longer.

    PID Control
    The third controller type provides proportional with integral and derivative control, or PID. This controller combines proportional control with two additional adjustments, which helps the unit automatically compensate for changes in the system. These adjustments, integral and derivative, are expressed in time-based units; they are also referred to by their reciprocals, RESET and RATE, respectively. The proportional, integral and derivative terms must be individually adjusted or “tuned” to a particular system using trial and error. It provides the most accurate and stable control of the three controller types, and is best used in systems which have a relatively small mass, those which react quickly to changes in the energy added to the process. It is recommended in systems where the load changes often and the controller is expected to compensate automatically due to frequent changes in setpoint, the amount of energy available, or the mass to be controlled.
    OMEGA offers a number of controllers that automatically tune themselves. These are known as autotune controllers.

    Standard Sizes
    Since temperature controllers are generally mounted inside an instrument panel, the panel must be cut to accommodate the temperature controller. In order to provide interchangeability between temperature controllers, most temperature controllers are designed to standard DIN sizes. The most common DIN sizes are shown below.
    Standard DIN Cutouts for Temperature Controllers

     

    http://www.omega.com/prodinfo/temperaturecontrollers.html

?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
공지 회사 목록 모아레 2011.02.07 20316
공지 메모 연락처 목록 모아레 2010.08.05 636
공지 메모 유용한 사이트 모아레 2010.02.25 7246
공지 메모 메모 정리 (미완) 모아레 2009.10.30 270
공지 메모 연구실 장비 목록 모아레 2009.09.30 1015
공지 메모 주문, 구입 리스트 모아레 2009.09.21 828
공지 메모 To do list, Short Memo 모아레 2009.08.20 925
92 메모 회식 자리 모음 모아레 2009.11.07 159
91 메모 클린룸 관련 사이트 모아레 2009.09.21 131
90 메모 컴퓨터 오류 모아레 2010.11.15 293
89 기타 충남대 물리학과 안교수님 연구실 정보 모아레 2009.07.02 155
88 메모 청계천 구입 리스트 모아레 2009.10.12 185
87 참고 사이트 모아레 2011.02.01 216
86 메모 중전 Windows XP EN 시디키 모아레 2010.01.25 311
85 자료 전자 부품 모아레 2010.01.26 198
84 메모 윈도우2003 프린터 공유 문제 해결 모아레 2010.02.10 400
83 메모 옥스포드장비에 연결할 어댑터 맡겨놨음 모아레 2009.07.15 631
82 메모 옥스포드 트랜스포트 튜브 거는 것 관련 모아레 2009.07.28 304
81 자료 오실로스코프의 이해와 올바른 사용법 모아레 2009.09.13 903
80 메모 연구실에서 구입했었던 모니터, 외장하드디스크, 하드디스크 모아레 2009.08.07 1348
79 기타 연구실 전화번호 명의, 결재 계좌 변경 관련 모아레 2010.02.24 731
78 메모 연구실 연락처 모아레 2009.06.23 438
77 메모 연구실 서버를 위한 리눅스 관리 가이드 모아레 2009.11.10 2810
76 메모 연구실 공유기, 프린터 공유 설정 모아레 2009.07.19 761
75 메모 어디서 먼지들이 샘플에 다닥다닥붙는지 체크할것 모아레 2010.02.20 2013
74 자료 아세톤 메탄올 IPA 사용에 관한 포스트 모아레 2009.08.18 5553
73 메모 반도체공동연구소(반공연) 공정접수 내용 모아레 2010.02.01 4179
Board Pagination Prev 1 2 3 4 ... 5 Next
/ 5