로그인

검색

OBG
조회 수 2939 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

[ 요약 ]

 

(1) 10년 ~ 15년 전에는 Apriori 알고리즘. 대표적인 연관 상품 추천 알고리즘.

-> https://ratsgo.github.io/machine%20learning/2017/04/08/apriori/

 

(2) 5~10년 전에는 Apriori 다음으로 Collaboration Filtering

-> https://www.slideshare.net/MrChrisJohnson/collaborative-filtering-with-spark

 

(3) 4 ~7년 전에는 FPGroth . Apriori 의 BigData  버전

-> http://blog.naver.com/PostView.nhn?blogId=sindong14&logNo=220661064114&parentCategoryNo=&categoryNo=48&viewDate=&isShowPopularPosts=true&from=search

 

(3.5) 4 ~ 5년 전에는 Collaboration Filltering + Deep Learning  혹은 유사 Approach

-> https://www.whydsp.org/291

 

(4) 3~5년 전에는 Matrix Factorization

-> http://sanghyukchun.github.io/73/

 

(5) 2~4년 전에는 Item2Vec + CF

-> [Microsoft 논문] https://arxiv.org/vc/arxiv/papers/1603/1603.04259v2.pdf

-> [관련 블로그] https://brunch.co.kr/@goodvc78/16

 

(6) 2~3년 전에는 You-tube Recommendation 스타일 Deep Learning Approach

-> [논문] https://static.googleusercontent.com/media/research.google.com/ko//pubs/archive/45530.pdf

-> [논문 요약] http://keunwoochoi.blogspot.com/2016/09/deep-neural-networks-for-youtube.html

-> [슬라이드 쉐어] https://pt.slideshare.net/lekaha/deep-neural-network-for-youtube-recommendations

-> 유튜브 알고리즘에 대한 다양한 인문학적 고찰 https://www.bloter.net/archives/301890

 

(7) 1~3년 전부터 Wide & Deep Model

-> [논문] https://arxiv.org/abs/1606.07792

-> [조대협님이 정리한 코드가 있는 블로그] https://bcho.tistory.com/tag/wide%20and%20deep%20model

 

(8) 1~2년 전부터 개인화 추천이 뜨면서 다시 각광 받는 Factorization Machine. (논문은 사실 좀 오래 되었음.)
-> [HOL] https://cloud.hosting.kr/techblog_180709_movie-recommender-with-factorization-machines/

 

(8.5) Matrix Factorization 과 Factorization Machine 과의 차이점.

https://stats.stackexchange.com/questions/108901/difference-between-factorization-machines-and-matrix-factorization

논문 참고 : https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf

 

(9) 최근. 개인화 추천. ( 2017 re-invent By Amazon )

-> [슬라이드쉐어] https://fr.slideshare.net/AmazonWebServices/building-content-recommendation-systems-using-apache-mxnet-and-gluon-mcl402-reinvent-2017

 

(10) 최근. 개인화 추천. Hierarchical RNN ( 2018 re-invent By Amazon )

-> [구현체] 저자의 구현체 공개버전 : https://github.com/mquad/hgru4rec

 

(11) 최근. 개인화 Re-Ranking. (개인화 Reinforcement Learning Re-Ranking By 알리바바)

-> [논문] https://arxiv.org/pdf/1803.00710.pdf

 

(12) Deep Learning 기반 최신 추천시스템 동향 관련 Survey 논문

-> https://arxiv.org/pdf/1707.07435.pdf

 

자세한 내용은 아래 블로그를 참고한다.

http://hoondongkim.blogspot.com/2019/03/recommendation-trend.html

 

 

?

  1. Programming 게시판 관련

  2. 알리바바, 딥시크·오픈AI 넘는 추론 모델 출시..."오픈 소스 최강 입증" (QwQ-32B)

  3. 존 카맥이 일리야 수츠키버를 4년전에 만났을때, 추천받은 책과 논문 목록

  4. 2024년 가장 조회수 높은 소프트웨어 엔지니어링 발표들

  5. OS 개발에 관한 작은 책

  6. AI-hub 공공데이터를 활용하여 한국어-영어 번역 LLM 만들기

  7. llama3 implemented from scratch

  8. 얼렁뚱땅 LLM을 만들어보자

  9. OS in 1,000 Lines

  10. PEFT: Parameter-Efficient Fine-Tuning of Billion-Scale Models on Low-Resource Hardware

  11. A Beginner's Guide to Prompt Engineering with GitHub Copilot

  12. GDB Dashboard

  13. GitHut Copilot - Agent 모드 공개

  14. Caching in Node.js to optimize app performance

  15. Debugging Node.js Memory Leaks: How to Detect, Solve or Avoid Them in Applications

  16. 나이 들어가는 프로그래머 - [발표영상] 요약

  17. PyTorch 딥러닝 챗봇

  18. Mixture of Experts - Part 2

  19. Creating A Fixed-Length Queue In JavaScript Using Arrays

  20. 멀티-플레이어 게임 서버와 레이턴시 보상 테크닉

  21. Design a Basic Search Engine (Google or Bing) | System Design Interview Prep

Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 15 Next
/ 15