로그인

검색

OBG
조회 수 2940 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

[ 요약 ]

 

(1) 10년 ~ 15년 전에는 Apriori 알고리즘. 대표적인 연관 상품 추천 알고리즘.

-> https://ratsgo.github.io/machine%20learning/2017/04/08/apriori/

 

(2) 5~10년 전에는 Apriori 다음으로 Collaboration Filtering

-> https://www.slideshare.net/MrChrisJohnson/collaborative-filtering-with-spark

 

(3) 4 ~7년 전에는 FPGroth . Apriori 의 BigData  버전

-> http://blog.naver.com/PostView.nhn?blogId=sindong14&logNo=220661064114&parentCategoryNo=&categoryNo=48&viewDate=&isShowPopularPosts=true&from=search

 

(3.5) 4 ~ 5년 전에는 Collaboration Filltering + Deep Learning  혹은 유사 Approach

-> https://www.whydsp.org/291

 

(4) 3~5년 전에는 Matrix Factorization

-> http://sanghyukchun.github.io/73/

 

(5) 2~4년 전에는 Item2Vec + CF

-> [Microsoft 논문] https://arxiv.org/vc/arxiv/papers/1603/1603.04259v2.pdf

-> [관련 블로그] https://brunch.co.kr/@goodvc78/16

 

(6) 2~3년 전에는 You-tube Recommendation 스타일 Deep Learning Approach

-> [논문] https://static.googleusercontent.com/media/research.google.com/ko//pubs/archive/45530.pdf

-> [논문 요약] http://keunwoochoi.blogspot.com/2016/09/deep-neural-networks-for-youtube.html

-> [슬라이드 쉐어] https://pt.slideshare.net/lekaha/deep-neural-network-for-youtube-recommendations

-> 유튜브 알고리즘에 대한 다양한 인문학적 고찰 https://www.bloter.net/archives/301890

 

(7) 1~3년 전부터 Wide & Deep Model

-> [논문] https://arxiv.org/abs/1606.07792

-> [조대협님이 정리한 코드가 있는 블로그] https://bcho.tistory.com/tag/wide%20and%20deep%20model

 

(8) 1~2년 전부터 개인화 추천이 뜨면서 다시 각광 받는 Factorization Machine. (논문은 사실 좀 오래 되었음.)
-> [HOL] https://cloud.hosting.kr/techblog_180709_movie-recommender-with-factorization-machines/

 

(8.5) Matrix Factorization 과 Factorization Machine 과의 차이점.

https://stats.stackexchange.com/questions/108901/difference-between-factorization-machines-and-matrix-factorization

논문 참고 : https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf

 

(9) 최근. 개인화 추천. ( 2017 re-invent By Amazon )

-> [슬라이드쉐어] https://fr.slideshare.net/AmazonWebServices/building-content-recommendation-systems-using-apache-mxnet-and-gluon-mcl402-reinvent-2017

 

(10) 최근. 개인화 추천. Hierarchical RNN ( 2018 re-invent By Amazon )

-> [구현체] 저자의 구현체 공개버전 : https://github.com/mquad/hgru4rec

 

(11) 최근. 개인화 Re-Ranking. (개인화 Reinforcement Learning Re-Ranking By 알리바바)

-> [논문] https://arxiv.org/pdf/1803.00710.pdf

 

(12) Deep Learning 기반 최신 추천시스템 동향 관련 Survey 논문

-> https://arxiv.org/pdf/1707.07435.pdf

 

자세한 내용은 아래 블로그를 참고한다.

http://hoondongkim.blogspot.com/2019/03/recommendation-trend.html

 

 

?

  1. Programming 게시판 관련

  2. 존 카맥이 일리야 수츠키버를 4년전에 만났을때, 추천받은 책과 논문 목록

  3. PyTorch 딥러닝 챗봇

  4. LSTM-AE를 이용한 시퀀스 데이터 이상 탐지

  5. [ifkakao] 추천 시스템: 맥락과 취향 사이 줄타

  6. 시계열 데이터 예측 모델

  7. Keras를 활용한 주식 가격 예측

  8. 파이썬 머신러닝 무료 강의 (7시간)

  9. 마이크로소프트가 공개한 무료 AI 코스들

  10. Reinforcement Learning for Dynamic Pricing Suggestion

  11. The State of AI & Art 2022

  12. Play Super Mario Bros with a Double Deep Q-Network

  13. RuntimeError: CUDA error: CUBLAS_STATUS_ALLOC_FAILED ...

  14. LLaMA: INT8 edition

  15. [한빛미디어] 머신러닝·딥러닝 도서 선택 가이드

  16. 강화학습 학습 관련 정리

  17. 내 마음대로 선정한 머신러닝/딥러닝 학습 추천 서적

  18. Using Machine Learning to Predict Customers’ Next Purchase Day

  19. 추천(Recommendation) 시스템 - 알고리즘 Trend 정리

  20. Top 3 most used Pytorch Ecosystem Libraries you should Know about

  21. 추천 시스템

Board Pagination Prev 1 2 Next
/ 2