로그인

검색

조회 수 3606 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

http://www.algorithmist.net/technotes.html

 

Computational Geometry

Focusing primarily on interactive creation and display of two-dimensional curves, I hope this series illustrates that Flash is a valuable tool in teaching computational geometry. Each TechNote below opens in a new browser window.

:: Natural Cubic Splines - Natural and parametric cubic splines.

:: Hermite Curves - Cubic Hermite curves.

:: Quadratic Beizer Curves - Quadratic Beizer's and MovieClip.curveTo().

:: Cubic Bezier Curves - Cubic Bezier's and introduction to quadratic approximation.

:: Catmull-Rom Splines - An introduction to Catmull-Rom Splines.

:: Arc Length of a Catmull-Rom Spline - Arc Length of parametric curves and derivative evaluation, applied to Catmull-Rom splines.

:: Curve-Constrained Scrolling Via Script - Parametric Quadratic and Piecewise Hermite curves applied to curve-constrained scroll indicators.

:: Arc-Length Parameterization - Introduction to curve parameterization and how to reparameterize a curve on arc length. Techniques applied to a Catmull-Rom spline. Examples include how to distribute sprites evenly along a curve and path animation (including path following and orientation).

:: Recursive Subdivision - Splitting a cubic Bezier curve into multiple equivalent, but smaller segments. Several subdivision approaches are discussed with the ultimate goal of pairing a fast subdivision with a piecewise cubic Bezier spline.

:: Composite Bezier Curves - Constructing a piecewise cubic Bezier curve that interpolates a set of knots with G-1 continuity and tension control. Optimized for fast drawing.

Online Demos

These interactive demos illustrate various concepts in applied mathematics. Most initial examples are from the field of computational geometry. All demos required the Flash 9 player.

:: Parameterization Demo - Illustrate the difference bewteen uniform and arc-length parameterization on a cubic Bezier spline.

::Quadratic Bezier Parameterization - illustrates the difference in natural vs arc-length parameterization for a simple quadratic Bezier curve.

::Quad. Bezier, 3-point interpolation - The classic formula familiar to many Flash programmers is actually a simplified version of a more general parameterization, called 'midpoint' parameterization or 'midpoint interpolation'. The more general formula is discussed in the Cubic Bezier TechNote. This demo illustrates the difference between midpoint, chord-length, and arbitrary parameterizations.

::Catmull-Rom Spline animation - a simple example illustrating the animation of a Catmull-Rom spline from beginning to end, as if it were being drawn by hand. Also a subtle introduction to spline parameterization.

::Closed-Loop Catmull-Rom spline - a simple method for setting outer control points for a smooth, continuous-loop Catmull-Rom spline.

::Path Animation with Papervision 3D - a simple demo illustrating path animation with Papervision 3D and the 3D Catmull-Rom spline.

::Lemniscate of Bernoulli - how to use a closed-loop Catmull-Rom spline to animate sprites around a Lemniscate of Bernoulli (infinity or fiture-8 shape).

::Papervision 3D Figure-8's- builds upon the 2D Lemniscate of Bernoulli example to animate markers along figure-8 paths in the XY, XZ, and YZ planes.

::Papervision 3D Path Animation from 3ds max - uses spline data exported from 3ds max (in XML) and the Singularity 3D Bezier spline for path animation in Papervision 3D.

::Quadratic Bezier y at x - computes (t,y) values along a quadratic Bezier curve at a given x-coordinate.

::Cubic Bezier y at x - computes (t,y) values along a cubic Bezier curve at a given x-coordinate.

::Closest Point on Cubic - closest point on a cubic Bezier to an arbitrary point (port of class Graphic Gem algorithm).

::Closest Point on Quadratic - closest point on a quadratic Bezier to an arbitrary point (Graphic Gem algorithm generalized to work with quads or cubics).

::Easing Along a Cubic Bezier Curve- Penner easing functions applied to easing along a parametric curve. Another practical application of arc-length parameterization.

::Cubic Bezier 4-point Interpolation-Interpolating four points with a cubic Bezier curve.

?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
33 과학 초전도체의 비밀 모아레 2009.03.19 2512
32 IT 탐색기에서 보기 기본설정을 아이콘으로 바꾸는 방법 모아레 2009.03.13 2516
31 과학 A life of a quant 모아레 2009.03.12 2624
30 IT 플래시 html간의 통신 모아레 2009.02.10 2836
29 과학 일본과 영어 모아레 2009.02.10 2234
28 IT 노트북 배터리에 대한 모든 것 (스크롤 압박 주의) 모아레 2009.02.07 4678
27 IT 애플 vs. 팜 특허전쟁 심층분석 모아레 2009.02.06 2981
26 IT 윈도우 XP에서 137GB가 넘는 용량의 하드디스크를 인식 못하는 경우 모아레 2009.01.19 3013
25 IT 베가스 강좌 모아레 2008.07.17 3368
24 IT 플래시 강좌 모아레 2008.07.11 3532
23 IT 플래시 3.0 모아레 2008.05.14 2487
22 IT 리눅스를 처음 사용하시는 분들을 위한 북마크 모아레 2008.05.12 3845
21 IT 공유기 문제 관련 모아레 2008.03.11 5003
20 IT 자기 컴퓨터에 테터툴즈 설치하기 MoA 2007.08.26 3481
19 IT XP Secrets MoA 2007.06.21 2307
18 과학 물리 질문 내용 MoA 2007.06.20 2349
17 IT 컴퓨터 관련 사이트 정리 MoA 2007.05.14 3289
16 IT 홈페이지 방문자 알기? MoA 2007.05.04 3235
15 과학 몇몇 물리 관련 사이트 (Are you a quack? 외) MoA 2007.05.03 2503
14 과학 수학 기호 MoA 2007.04.19 4352
Board Pagination Prev 1 ... 11 12 13 14 15 16 17 18 19 20 Next
/ 20