로그인

검색

조회 수 3600 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

http://www.algorithmist.net/technotes.html

 

Computational Geometry

Focusing primarily on interactive creation and display of two-dimensional curves, I hope this series illustrates that Flash is a valuable tool in teaching computational geometry. Each TechNote below opens in a new browser window.

:: Natural Cubic Splines - Natural and parametric cubic splines.

:: Hermite Curves - Cubic Hermite curves.

:: Quadratic Beizer Curves - Quadratic Beizer's and MovieClip.curveTo().

:: Cubic Bezier Curves - Cubic Bezier's and introduction to quadratic approximation.

:: Catmull-Rom Splines - An introduction to Catmull-Rom Splines.

:: Arc Length of a Catmull-Rom Spline - Arc Length of parametric curves and derivative evaluation, applied to Catmull-Rom splines.

:: Curve-Constrained Scrolling Via Script - Parametric Quadratic and Piecewise Hermite curves applied to curve-constrained scroll indicators.

:: Arc-Length Parameterization - Introduction to curve parameterization and how to reparameterize a curve on arc length. Techniques applied to a Catmull-Rom spline. Examples include how to distribute sprites evenly along a curve and path animation (including path following and orientation).

:: Recursive Subdivision - Splitting a cubic Bezier curve into multiple equivalent, but smaller segments. Several subdivision approaches are discussed with the ultimate goal of pairing a fast subdivision with a piecewise cubic Bezier spline.

:: Composite Bezier Curves - Constructing a piecewise cubic Bezier curve that interpolates a set of knots with G-1 continuity and tension control. Optimized for fast drawing.

Online Demos

These interactive demos illustrate various concepts in applied mathematics. Most initial examples are from the field of computational geometry. All demos required the Flash 9 player.

:: Parameterization Demo - Illustrate the difference bewteen uniform and arc-length parameterization on a cubic Bezier spline.

::Quadratic Bezier Parameterization - illustrates the difference in natural vs arc-length parameterization for a simple quadratic Bezier curve.

::Quad. Bezier, 3-point interpolation - The classic formula familiar to many Flash programmers is actually a simplified version of a more general parameterization, called 'midpoint' parameterization or 'midpoint interpolation'. The more general formula is discussed in the Cubic Bezier TechNote. This demo illustrates the difference between midpoint, chord-length, and arbitrary parameterizations.

::Catmull-Rom Spline animation - a simple example illustrating the animation of a Catmull-Rom spline from beginning to end, as if it were being drawn by hand. Also a subtle introduction to spline parameterization.

::Closed-Loop Catmull-Rom spline - a simple method for setting outer control points for a smooth, continuous-loop Catmull-Rom spline.

::Path Animation with Papervision 3D - a simple demo illustrating path animation with Papervision 3D and the 3D Catmull-Rom spline.

::Lemniscate of Bernoulli - how to use a closed-loop Catmull-Rom spline to animate sprites around a Lemniscate of Bernoulli (infinity or fiture-8 shape).

::Papervision 3D Figure-8's- builds upon the 2D Lemniscate of Bernoulli example to animate markers along figure-8 paths in the XY, XZ, and YZ planes.

::Papervision 3D Path Animation from 3ds max - uses spline data exported from 3ds max (in XML) and the Singularity 3D Bezier spline for path animation in Papervision 3D.

::Quadratic Bezier y at x - computes (t,y) values along a quadratic Bezier curve at a given x-coordinate.

::Cubic Bezier y at x - computes (t,y) values along a cubic Bezier curve at a given x-coordinate.

::Closest Point on Cubic - closest point on a cubic Bezier to an arbitrary point (port of class Graphic Gem algorithm).

::Closest Point on Quadratic - closest point on a quadratic Bezier to an arbitrary point (Graphic Gem algorithm generalized to work with quads or cubics).

::Easing Along a Cubic Bezier Curve- Penner easing functions applied to easing along a parametric curve. Another practical application of arc-length parameterization.

::Cubic Bezier 4-point Interpolation-Interpolating four points with a cubic Bezier curve.

?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
52 IT FortiClient Unable to receive SSL VPN tunnel IP address (-30) 에러 해결 OBG 2022.06.08 3153
51 IT Flappy Birds Family 출시 file MoA 2014.08.02 2558
50 과학 Euler-Method MoA 2006.04.01 2017
49 교양 EBS 지식채널e - 세계 1위 (대학 등록금...) 비지 2011.07.03 2645
48 IT dts로 릴된 영화 작은 소리 확실하게 증폭해서 듣는방법 너울 2011.08.16 3359
47 IT DNS 캐쉬 초기화로 인터넷 로딩 속도 높이기 MoA 2014.04.23 3173
46 과학 David Halliday 모아레 2010.04.08 2955
45 교양 Crime Comparison Between Two Countries file MoA 2015.10.04 2902
44 투자 Cap Rate (feat. 채부심) OBG 2023.11.08 2706
43 IT C: 용량 늘리기 모아레 2010.05.16 3389
42 투자 BTS·블랙핑크 음반도 나를 通한다 (YG Plus) OBG 2024.10.23 1632
41 과학 bandwidth란 무엇일까요? 모아레 2009.08.24 3335
40 IT ATIV 프리뷰 Naya 2012.09.25 4187
39 IT ARM 프로세서 분석 및 발전 방향 너울 2011.10.16 3254
38 IT Apple ‘나의 찾기’ 네트워크, 2025년 봄 대한민국에 도입 OBG 2024.09.06 2333
37 교양 acronyms 모아레 2009.04.26 2902
36 교양 Abbreviations 모아레 2009.10.31 2513
35 과학 A life of a quant 모아레 2009.03.12 2619
34 시사 5월 27일, 아- 광주 비지 2011.05.26 1837
33 과학 50 Years of Mars Exploration file MoA 2015.10.15 2659
Board Pagination Prev 1 ... 11 12 13 14 15 16 17 18 19 20 Next
/ 20