로그인

검색

조회 수 3694 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

http://www.algorithmist.net/technotes.html

 

Computational Geometry

Focusing primarily on interactive creation and display of two-dimensional curves, I hope this series illustrates that Flash is a valuable tool in teaching computational geometry. Each TechNote below opens in a new browser window.

:: Natural Cubic Splines - Natural and parametric cubic splines.

:: Hermite Curves - Cubic Hermite curves.

:: Quadratic Beizer Curves - Quadratic Beizer's and MovieClip.curveTo().

:: Cubic Bezier Curves - Cubic Bezier's and introduction to quadratic approximation.

:: Catmull-Rom Splines - An introduction to Catmull-Rom Splines.

:: Arc Length of a Catmull-Rom Spline - Arc Length of parametric curves and derivative evaluation, applied to Catmull-Rom splines.

:: Curve-Constrained Scrolling Via Script - Parametric Quadratic and Piecewise Hermite curves applied to curve-constrained scroll indicators.

:: Arc-Length Parameterization - Introduction to curve parameterization and how to reparameterize a curve on arc length. Techniques applied to a Catmull-Rom spline. Examples include how to distribute sprites evenly along a curve and path animation (including path following and orientation).

:: Recursive Subdivision - Splitting a cubic Bezier curve into multiple equivalent, but smaller segments. Several subdivision approaches are discussed with the ultimate goal of pairing a fast subdivision with a piecewise cubic Bezier spline.

:: Composite Bezier Curves - Constructing a piecewise cubic Bezier curve that interpolates a set of knots with G-1 continuity and tension control. Optimized for fast drawing.

Online Demos

These interactive demos illustrate various concepts in applied mathematics. Most initial examples are from the field of computational geometry. All demos required the Flash 9 player.

:: Parameterization Demo - Illustrate the difference bewteen uniform and arc-length parameterization on a cubic Bezier spline.

::Quadratic Bezier Parameterization - illustrates the difference in natural vs arc-length parameterization for a simple quadratic Bezier curve.

::Quad. Bezier, 3-point interpolation - The classic formula familiar to many Flash programmers is actually a simplified version of a more general parameterization, called 'midpoint' parameterization or 'midpoint interpolation'. The more general formula is discussed in the Cubic Bezier TechNote. This demo illustrates the difference between midpoint, chord-length, and arbitrary parameterizations.

::Catmull-Rom Spline animation - a simple example illustrating the animation of a Catmull-Rom spline from beginning to end, as if it were being drawn by hand. Also a subtle introduction to spline parameterization.

::Closed-Loop Catmull-Rom spline - a simple method for setting outer control points for a smooth, continuous-loop Catmull-Rom spline.

::Path Animation with Papervision 3D - a simple demo illustrating path animation with Papervision 3D and the 3D Catmull-Rom spline.

::Lemniscate of Bernoulli - how to use a closed-loop Catmull-Rom spline to animate sprites around a Lemniscate of Bernoulli (infinity or fiture-8 shape).

::Papervision 3D Figure-8's- builds upon the 2D Lemniscate of Bernoulli example to animate markers along figure-8 paths in the XY, XZ, and YZ planes.

::Papervision 3D Path Animation from 3ds max - uses spline data exported from 3ds max (in XML) and the Singularity 3D Bezier spline for path animation in Papervision 3D.

::Quadratic Bezier y at x - computes (t,y) values along a quadratic Bezier curve at a given x-coordinate.

::Cubic Bezier y at x - computes (t,y) values along a cubic Bezier curve at a given x-coordinate.

::Closest Point on Cubic - closest point on a cubic Bezier to an arbitrary point (port of class Graphic Gem algorithm).

::Closest Point on Quadratic - closest point on a quadratic Bezier to an arbitrary point (Graphic Gem algorithm generalized to work with quads or cubics).

::Easing Along a Cubic Bezier Curve- Penner easing functions applied to easing along a parametric curve. Another practical application of arc-length parameterization.

::Cubic Bezier 4-point Interpolation-Interpolating four points with a cubic Bezier curve.

?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
56 과학 아인슈타인의 일반상대론 MoA 2007.02.27 1930
55 사설 현자의 코드 (전산철학 관련글) MoA 2014.02.24 1921
54 투자 3배 레버리지 ETF 장투를 절대 하면 안되는 이유 OBG 2022.07.06 1900
53 사설 기왕 외국식으로 할거라면 확실하게 해야지 - 체벌 문제 비지 2011.05.08 1894
52 IT 윈도우 7 - 빠른 실행 되살리기 모아레 2009.05.17 1887
51 투자 부동산 PF 근황 OBG 2023.10.31 1875
50 교양 커피는 콜레스테롤을 얼마나 높일까? OBG 2023.10.16 1873
49 투자 루닛 레포트 - 이 기업이 잘되면 내 수명이 늘어납니다 OBG 2022.12.30 1870
48 교양 미국여행 전 필요한 것들 모아레 2010.03.19 1848
47 투자 [RSNA2022] 루닛의 AI 진단보조 RWD 연구가 가지는 의미는? OBG 2022.12.04 1844
46 투자 쿠팡은 왜 적자를 탈출할 수 없는걸까? OBG 2022.11.10 1828
45 투자 티메프 사태, 핵심은 금융과 비금융의 분리다. OBG 2024.08.05 1825
44 투자 헝다그룹 파산과 주가 & fomc OBG 2021.09.23 1824
43 투자 비잔티움 장군 문제를 블록체인에 대입해보자 OBG 2024.01.11 1806
42 투자 미국국채근황 (feat. SVB 파이낸셜 사태) OBG 2023.03.11 1761
41 투자 3차원 검사장비 수출 관련 (LG이노텍, 고영 등) OBG 2022.11.02 1749
40 투자 "이건희 회장도 못 사"..삼성도 포기한 꼬마빌딩 17년이 지난 현재 가격 OBG 2022.08.26 1741
39 투자 아무도 관심 없는 업종(1) - 광고업 OBG 2021.08.05 1728
38 투자 NFT작가로 활동한지 한달째, 후기 OBG 2021.12.07 1720
37 투자 [플레이위드] 씰m 커뮤니티 OBG 2022.05.27 1705
Board Pagination Prev 1 ... 11 12 13 14 15 16 17 18 19 20 Next
/ 20