로그인

검색

조회 수 3612 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

http://www.algorithmist.net/technotes.html

 

Computational Geometry

Focusing primarily on interactive creation and display of two-dimensional curves, I hope this series illustrates that Flash is a valuable tool in teaching computational geometry. Each TechNote below opens in a new browser window.

:: Natural Cubic Splines - Natural and parametric cubic splines.

:: Hermite Curves - Cubic Hermite curves.

:: Quadratic Beizer Curves - Quadratic Beizer's and MovieClip.curveTo().

:: Cubic Bezier Curves - Cubic Bezier's and introduction to quadratic approximation.

:: Catmull-Rom Splines - An introduction to Catmull-Rom Splines.

:: Arc Length of a Catmull-Rom Spline - Arc Length of parametric curves and derivative evaluation, applied to Catmull-Rom splines.

:: Curve-Constrained Scrolling Via Script - Parametric Quadratic and Piecewise Hermite curves applied to curve-constrained scroll indicators.

:: Arc-Length Parameterization - Introduction to curve parameterization and how to reparameterize a curve on arc length. Techniques applied to a Catmull-Rom spline. Examples include how to distribute sprites evenly along a curve and path animation (including path following and orientation).

:: Recursive Subdivision - Splitting a cubic Bezier curve into multiple equivalent, but smaller segments. Several subdivision approaches are discussed with the ultimate goal of pairing a fast subdivision with a piecewise cubic Bezier spline.

:: Composite Bezier Curves - Constructing a piecewise cubic Bezier curve that interpolates a set of knots with G-1 continuity and tension control. Optimized for fast drawing.

Online Demos

These interactive demos illustrate various concepts in applied mathematics. Most initial examples are from the field of computational geometry. All demos required the Flash 9 player.

:: Parameterization Demo - Illustrate the difference bewteen uniform and arc-length parameterization on a cubic Bezier spline.

::Quadratic Bezier Parameterization - illustrates the difference in natural vs arc-length parameterization for a simple quadratic Bezier curve.

::Quad. Bezier, 3-point interpolation - The classic formula familiar to many Flash programmers is actually a simplified version of a more general parameterization, called 'midpoint' parameterization or 'midpoint interpolation'. The more general formula is discussed in the Cubic Bezier TechNote. This demo illustrates the difference between midpoint, chord-length, and arbitrary parameterizations.

::Catmull-Rom Spline animation - a simple example illustrating the animation of a Catmull-Rom spline from beginning to end, as if it were being drawn by hand. Also a subtle introduction to spline parameterization.

::Closed-Loop Catmull-Rom spline - a simple method for setting outer control points for a smooth, continuous-loop Catmull-Rom spline.

::Path Animation with Papervision 3D - a simple demo illustrating path animation with Papervision 3D and the 3D Catmull-Rom spline.

::Lemniscate of Bernoulli - how to use a closed-loop Catmull-Rom spline to animate sprites around a Lemniscate of Bernoulli (infinity or fiture-8 shape).

::Papervision 3D Figure-8's- builds upon the 2D Lemniscate of Bernoulli example to animate markers along figure-8 paths in the XY, XZ, and YZ planes.

::Papervision 3D Path Animation from 3ds max - uses spline data exported from 3ds max (in XML) and the Singularity 3D Bezier spline for path animation in Papervision 3D.

::Quadratic Bezier y at x - computes (t,y) values along a quadratic Bezier curve at a given x-coordinate.

::Cubic Bezier y at x - computes (t,y) values along a cubic Bezier curve at a given x-coordinate.

::Closest Point on Cubic - closest point on a cubic Bezier to an arbitrary point (port of class Graphic Gem algorithm).

::Closest Point on Quadratic - closest point on a quadratic Bezier to an arbitrary point (Graphic Gem algorithm generalized to work with quads or cubics).

::Easing Along a Cubic Bezier Curve- Penner easing functions applied to easing along a parametric curve. Another practical application of arc-length parameterization.

::Cubic Bezier 4-point Interpolation-Interpolating four points with a cubic Bezier curve.

?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
53 투자 [RSNA2022] 루닛의 AI 진단보조 RWD 연구가 가지는 의미는? OBG 2022.12.04 1776
52 교양 한국에서 기초과학이 발전할 수 없는 이유.jpg 모아레 2010.06.30 1764
51 투자 헝다그룹 파산과 주가 & fomc OBG 2021.09.23 1762
50 투자 3차원 검사장비 수출 관련 (LG이노텍, 고영 등) OBG 2022.11.02 1703
49 투자 미국국채근황 (feat. SVB 파이낸셜 사태) OBG 2023.03.11 1686
48 투자 "이건희 회장도 못 사"..삼성도 포기한 꼬마빌딩 17년이 지난 현재 가격 OBG 2022.08.26 1669
47 투자 아무도 관심 없는 업종(1) - 광고업 OBG 2021.08.05 1660
46 투자 네이버 페이 예적금 정보 OBG 2022.11.07 1655
45 투자 NFT작가로 활동한지 한달째, 후기 OBG 2021.12.07 1653
44 투자 비잔티움 장군 문제를 블록체인에 대입해보자 OBG 2024.01.11 1646
43 투자 [플레이위드] 씰m 커뮤니티 OBG 2022.05.27 1639
42 투자 루닛 레포트 - 이 기업이 잘되면 내 수명이 늘어납니다 OBG 2022.12.30 1637
41 투자 BTS·블랙핑크 음반도 나를 通한다 (YG Plus) OBG 2024.10.23 1635
40 투자 투자 구루들의 포트폴리오 사이트 OBG 2024.01.24 1633
39 투자 티메프 사태, 핵심은 금융과 비금융의 분리다. OBG 2024.08.05 1627
38 시사 카다피의 일생에 관하여 Naya 2011.08.22 1619
37 과학 인류가 다시 달에 가야하는 이유 OBG 2022.06.10 1613
36 IT 세계에서 제일 작은 공유기 MoA 2013.08.16 1608
35 IT 윈도우 7 - 빠른 실행 되살리기 모아레 2009.05.17 1558
34 투자 각종 개발 호재로 판교 넘보는 성남 구도심, 미래에는 이렇게 변합니다! OBG 2022.02.17 1552
Board Pagination Prev 1 ... 11 12 13 14 15 16 17 18 19 20 Next
/ 20