로그인

검색

조회 수 3601 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

http://www.algorithmist.net/technotes.html

 

Computational Geometry

Focusing primarily on interactive creation and display of two-dimensional curves, I hope this series illustrates that Flash is a valuable tool in teaching computational geometry. Each TechNote below opens in a new browser window.

:: Natural Cubic Splines - Natural and parametric cubic splines.

:: Hermite Curves - Cubic Hermite curves.

:: Quadratic Beizer Curves - Quadratic Beizer's and MovieClip.curveTo().

:: Cubic Bezier Curves - Cubic Bezier's and introduction to quadratic approximation.

:: Catmull-Rom Splines - An introduction to Catmull-Rom Splines.

:: Arc Length of a Catmull-Rom Spline - Arc Length of parametric curves and derivative evaluation, applied to Catmull-Rom splines.

:: Curve-Constrained Scrolling Via Script - Parametric Quadratic and Piecewise Hermite curves applied to curve-constrained scroll indicators.

:: Arc-Length Parameterization - Introduction to curve parameterization and how to reparameterize a curve on arc length. Techniques applied to a Catmull-Rom spline. Examples include how to distribute sprites evenly along a curve and path animation (including path following and orientation).

:: Recursive Subdivision - Splitting a cubic Bezier curve into multiple equivalent, but smaller segments. Several subdivision approaches are discussed with the ultimate goal of pairing a fast subdivision with a piecewise cubic Bezier spline.

:: Composite Bezier Curves - Constructing a piecewise cubic Bezier curve that interpolates a set of knots with G-1 continuity and tension control. Optimized for fast drawing.

Online Demos

These interactive demos illustrate various concepts in applied mathematics. Most initial examples are from the field of computational geometry. All demos required the Flash 9 player.

:: Parameterization Demo - Illustrate the difference bewteen uniform and arc-length parameterization on a cubic Bezier spline.

::Quadratic Bezier Parameterization - illustrates the difference in natural vs arc-length parameterization for a simple quadratic Bezier curve.

::Quad. Bezier, 3-point interpolation - The classic formula familiar to many Flash programmers is actually a simplified version of a more general parameterization, called 'midpoint' parameterization or 'midpoint interpolation'. The more general formula is discussed in the Cubic Bezier TechNote. This demo illustrates the difference between midpoint, chord-length, and arbitrary parameterizations.

::Catmull-Rom Spline animation - a simple example illustrating the animation of a Catmull-Rom spline from beginning to end, as if it were being drawn by hand. Also a subtle introduction to spline parameterization.

::Closed-Loop Catmull-Rom spline - a simple method for setting outer control points for a smooth, continuous-loop Catmull-Rom spline.

::Path Animation with Papervision 3D - a simple demo illustrating path animation with Papervision 3D and the 3D Catmull-Rom spline.

::Lemniscate of Bernoulli - how to use a closed-loop Catmull-Rom spline to animate sprites around a Lemniscate of Bernoulli (infinity or fiture-8 shape).

::Papervision 3D Figure-8's- builds upon the 2D Lemniscate of Bernoulli example to animate markers along figure-8 paths in the XY, XZ, and YZ planes.

::Papervision 3D Path Animation from 3ds max - uses spline data exported from 3ds max (in XML) and the Singularity 3D Bezier spline for path animation in Papervision 3D.

::Quadratic Bezier y at x - computes (t,y) values along a quadratic Bezier curve at a given x-coordinate.

::Cubic Bezier y at x - computes (t,y) values along a cubic Bezier curve at a given x-coordinate.

::Closest Point on Cubic - closest point on a cubic Bezier to an arbitrary point (port of class Graphic Gem algorithm).

::Closest Point on Quadratic - closest point on a quadratic Bezier to an arbitrary point (Graphic Gem algorithm generalized to work with quads or cubics).

::Easing Along a Cubic Bezier Curve- Penner easing functions applied to easing along a parametric curve. Another practical application of arc-length parameterization.

::Cubic Bezier 4-point Interpolation-Interpolating four points with a cubic Bezier curve.

?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
193 IT 베가스 강좌 모아레 2008.07.17 3368
192 투자 배당으로 제2의 월급통장? SCHD(슈드) 투자하는 방법 OBG 2024.11.26 1284
191 투자 배당 줄이고 자사주 소각 금지하라고? 1 OBG 2021.11.01 2577
190 교양 밥, 냉장 보관하면 칼로리 50~60칼로리 감소 MoA 2015.12.12 2669
189 시사 박근혜 돌발영상(?) Naya 2011.12.09 2149
188 IT 미러리스(하이브리드)카메라 신제품 라인업 너울 2011.11.18 3508
187 교양 미국여행 전 필요한 것들 모아레 2010.03.19 1801
186 투자 미국국채근황 (feat. SVB 파이낸셜 사태) OBG 2023.03.11 1685
185 IT 미국 시골의 인터넷 가입 옵션.jpg file MoA 2015.09.19 2498
184 교양 미 원 vs 다시다 Naya 2011.11.19 2274
183 과학 물리관련사이트 정리 MoA 2007.03.08 3063
182 과학 물리 질문 내용 MoA 2007.06.20 2288
181 IT 무선 인터넷 보안팁 10가지 모아레 2009.04.27 3524
180 시사 무상급식은 부자급식이 결코 아니다 Naya 2011.08.22 2345
179 과학 목성의 탱킹 능력.gif file OBG 2015.11.26 2538
178 IT 모질라 썬더버드(Thunderbird) 백업과 복구 모아레 2010.06.20 3128
177 IT 모바일을 넘어 웨어러블 시대로 간다 MoA 2013.08.05 2783
176 과학 몇몇 물리 관련 사이트 (Are you a quack? 외) MoA 2007.05.03 2502
175 투자 메가커피 급성장의 비결은? (2021) OBG 2025.06.14 1783
174 IT 맥프로 제조 공정 MoA 2014.08.02 2007
Board Pagination Prev 1 ... 6 7 8 9 10 11 12 13 14 15 ... 20 Next
/ 20