로그인

검색

조회 수 3606 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

http://www.algorithmist.net/technotes.html

 

Computational Geometry

Focusing primarily on interactive creation and display of two-dimensional curves, I hope this series illustrates that Flash is a valuable tool in teaching computational geometry. Each TechNote below opens in a new browser window.

:: Natural Cubic Splines - Natural and parametric cubic splines.

:: Hermite Curves - Cubic Hermite curves.

:: Quadratic Beizer Curves - Quadratic Beizer's and MovieClip.curveTo().

:: Cubic Bezier Curves - Cubic Bezier's and introduction to quadratic approximation.

:: Catmull-Rom Splines - An introduction to Catmull-Rom Splines.

:: Arc Length of a Catmull-Rom Spline - Arc Length of parametric curves and derivative evaluation, applied to Catmull-Rom splines.

:: Curve-Constrained Scrolling Via Script - Parametric Quadratic and Piecewise Hermite curves applied to curve-constrained scroll indicators.

:: Arc-Length Parameterization - Introduction to curve parameterization and how to reparameterize a curve on arc length. Techniques applied to a Catmull-Rom spline. Examples include how to distribute sprites evenly along a curve and path animation (including path following and orientation).

:: Recursive Subdivision - Splitting a cubic Bezier curve into multiple equivalent, but smaller segments. Several subdivision approaches are discussed with the ultimate goal of pairing a fast subdivision with a piecewise cubic Bezier spline.

:: Composite Bezier Curves - Constructing a piecewise cubic Bezier curve that interpolates a set of knots with G-1 continuity and tension control. Optimized for fast drawing.

Online Demos

These interactive demos illustrate various concepts in applied mathematics. Most initial examples are from the field of computational geometry. All demos required the Flash 9 player.

:: Parameterization Demo - Illustrate the difference bewteen uniform and arc-length parameterization on a cubic Bezier spline.

::Quadratic Bezier Parameterization - illustrates the difference in natural vs arc-length parameterization for a simple quadratic Bezier curve.

::Quad. Bezier, 3-point interpolation - The classic formula familiar to many Flash programmers is actually a simplified version of a more general parameterization, called 'midpoint' parameterization or 'midpoint interpolation'. The more general formula is discussed in the Cubic Bezier TechNote. This demo illustrates the difference between midpoint, chord-length, and arbitrary parameterizations.

::Catmull-Rom Spline animation - a simple example illustrating the animation of a Catmull-Rom spline from beginning to end, as if it were being drawn by hand. Also a subtle introduction to spline parameterization.

::Closed-Loop Catmull-Rom spline - a simple method for setting outer control points for a smooth, continuous-loop Catmull-Rom spline.

::Path Animation with Papervision 3D - a simple demo illustrating path animation with Papervision 3D and the 3D Catmull-Rom spline.

::Lemniscate of Bernoulli - how to use a closed-loop Catmull-Rom spline to animate sprites around a Lemniscate of Bernoulli (infinity or fiture-8 shape).

::Papervision 3D Figure-8's- builds upon the 2D Lemniscate of Bernoulli example to animate markers along figure-8 paths in the XY, XZ, and YZ planes.

::Papervision 3D Path Animation from 3ds max - uses spline data exported from 3ds max (in XML) and the Singularity 3D Bezier spline for path animation in Papervision 3D.

::Quadratic Bezier y at x - computes (t,y) values along a quadratic Bezier curve at a given x-coordinate.

::Cubic Bezier y at x - computes (t,y) values along a cubic Bezier curve at a given x-coordinate.

::Closest Point on Cubic - closest point on a cubic Bezier to an arbitrary point (port of class Graphic Gem algorithm).

::Closest Point on Quadratic - closest point on a quadratic Bezier to an arbitrary point (Graphic Gem algorithm generalized to work with quads or cubics).

::Easing Along a Cubic Bezier Curve- Penner easing functions applied to easing along a parametric curve. Another practical application of arc-length parameterization.

::Cubic Bezier 4-point Interpolation-Interpolating four points with a cubic Bezier curve.

?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
193 IT 리눅스는 어떻게 만들어질까? Naya 2012.04.17 3019
192 과학 교통신호 위반, 물리 문제 풀이로 무죄 Naya 2012.04.16 2715
191 교양 음료수에 들어가는 설탕의 양 Naya 2012.04.16 3241
190 IT 네이버, 노무현을 지우다 Naya 2012.04.15 3711
189 IT 개발자가 안드로이드 대신 iOS를 선택하는 이유 Naya 2012.04.10 3026
188 IT 전문작업용으론 사용하기 애매한 27인치 보급형 QHD 모니터들 너울 2012.04.09 3249
187 IT Google Project Glass: One day... Naya 2012.04.07 4174
186 IT TI eZ430 (Programmable watch) Naya 2012.04.06 2948
185 IT 아이콘 모음 너울 2012.03.28 3367
184 IT 윈도우 임베디드 CE 프로젝트의 12가지 금기 너울 2012.01.12 2904
183 시사 “청와대 지시로 디도스 금전거래 덮었다” Naya 2011.12.18 2449
182 IT 실리콘 밸리 시대를 연 8인의 배신자와 인텔 Naya 2011.12.12 3287
181 시사 박근혜 돌발영상(?) Naya 2011.12.09 2149
180 IT 노키아 루미아 710 - 윈도폰 7.5 탑재 Naya 2011.12.05 2334
179 IT Graph Theory : Facebook Naya 2011.11.27 3567
178 IT 페이스북 '알만한 사람' 어떻게 알아낼까? Naya 2011.11.26 4235
177 교양 여러가지 공포증(phobia, 恐怖症 ) Naya 2011.11.20 2934
176 교양 미 원 vs 다시다 Naya 2011.11.19 2276
175 IT 미러리스(하이브리드)카메라 신제품 라인업 너울 2011.11.18 3508
174 IT iOS 5’s Seven New Hidden Features Naya 2011.10.18 3776
Board Pagination Prev 1 ... 6 7 8 9 10 11 12 13 14 15 ... 20 Next
/ 20