로그인

검색

조회 수 3688 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

http://www.algorithmist.net/technotes.html

 

Computational Geometry

Focusing primarily on interactive creation and display of two-dimensional curves, I hope this series illustrates that Flash is a valuable tool in teaching computational geometry. Each TechNote below opens in a new browser window.

:: Natural Cubic Splines - Natural and parametric cubic splines.

:: Hermite Curves - Cubic Hermite curves.

:: Quadratic Beizer Curves - Quadratic Beizer's and MovieClip.curveTo().

:: Cubic Bezier Curves - Cubic Bezier's and introduction to quadratic approximation.

:: Catmull-Rom Splines - An introduction to Catmull-Rom Splines.

:: Arc Length of a Catmull-Rom Spline - Arc Length of parametric curves and derivative evaluation, applied to Catmull-Rom splines.

:: Curve-Constrained Scrolling Via Script - Parametric Quadratic and Piecewise Hermite curves applied to curve-constrained scroll indicators.

:: Arc-Length Parameterization - Introduction to curve parameterization and how to reparameterize a curve on arc length. Techniques applied to a Catmull-Rom spline. Examples include how to distribute sprites evenly along a curve and path animation (including path following and orientation).

:: Recursive Subdivision - Splitting a cubic Bezier curve into multiple equivalent, but smaller segments. Several subdivision approaches are discussed with the ultimate goal of pairing a fast subdivision with a piecewise cubic Bezier spline.

:: Composite Bezier Curves - Constructing a piecewise cubic Bezier curve that interpolates a set of knots with G-1 continuity and tension control. Optimized for fast drawing.

Online Demos

These interactive demos illustrate various concepts in applied mathematics. Most initial examples are from the field of computational geometry. All demos required the Flash 9 player.

:: Parameterization Demo - Illustrate the difference bewteen uniform and arc-length parameterization on a cubic Bezier spline.

::Quadratic Bezier Parameterization - illustrates the difference in natural vs arc-length parameterization for a simple quadratic Bezier curve.

::Quad. Bezier, 3-point interpolation - The classic formula familiar to many Flash programmers is actually a simplified version of a more general parameterization, called 'midpoint' parameterization or 'midpoint interpolation'. The more general formula is discussed in the Cubic Bezier TechNote. This demo illustrates the difference between midpoint, chord-length, and arbitrary parameterizations.

::Catmull-Rom Spline animation - a simple example illustrating the animation of a Catmull-Rom spline from beginning to end, as if it were being drawn by hand. Also a subtle introduction to spline parameterization.

::Closed-Loop Catmull-Rom spline - a simple method for setting outer control points for a smooth, continuous-loop Catmull-Rom spline.

::Path Animation with Papervision 3D - a simple demo illustrating path animation with Papervision 3D and the 3D Catmull-Rom spline.

::Lemniscate of Bernoulli - how to use a closed-loop Catmull-Rom spline to animate sprites around a Lemniscate of Bernoulli (infinity or fiture-8 shape).

::Papervision 3D Figure-8's- builds upon the 2D Lemniscate of Bernoulli example to animate markers along figure-8 paths in the XY, XZ, and YZ planes.

::Papervision 3D Path Animation from 3ds max - uses spline data exported from 3ds max (in XML) and the Singularity 3D Bezier spline for path animation in Papervision 3D.

::Quadratic Bezier y at x - computes (t,y) values along a quadratic Bezier curve at a given x-coordinate.

::Cubic Bezier y at x - computes (t,y) values along a cubic Bezier curve at a given x-coordinate.

::Closest Point on Cubic - closest point on a cubic Bezier to an arbitrary point (port of class Graphic Gem algorithm).

::Closest Point on Quadratic - closest point on a quadratic Bezier to an arbitrary point (Graphic Gem algorithm generalized to work with quads or cubics).

::Easing Along a Cubic Bezier Curve- Penner easing functions applied to easing along a parametric curve. Another practical application of arc-length parameterization.

::Cubic Bezier 4-point Interpolation-Interpolating four points with a cubic Bezier curve.

?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
195 IT 기업에서 사용할 경우 주의해야 할 프리웨어 알아보기 OBG 2023.08.16 2716
194 교양 [문학?]금도끼와 은도끼 모아레 2011.04.17 2711
193 과학 A life of a quant 모아레 2009.03.12 2710
192 IT 우분투 9.04 기본적인 삽질 모아레 2009.08.01 2709
191 교양 밥, 냉장 보관하면 칼로리 50~60칼로리 감소 MoA 2015.12.12 2708
190 과학 목성의 탱킹 능력.gif file OBG 2015.11.26 2689
189 과학 Impact factor 계산? 모아레 2009.09.16 2689
188 교양 당신이 쓰는 휴지, 안전합니까? MoA 2014.04.23 2682
187 과학 JUNK DNA MoA 2014.01.19 2669
186 교양 EBS 지식채널e - 세계 1위 (대학 등록금...) 비지 2011.07.03 2669
185 IT 내 비밀번호는 얼마나 안전한가 MoA 2013.03.14 2663
184 시사 국가 기강을 뒤흔든 내란급 사건임에도 지금은 조용히 묻혀진 사건.jpg file MoA 2015.11.27 2654
183 IT 좋은 컴퓨터 의자 file MoA 2013.11.24 2652
182 IT QR 코드 간단한 원리 Naya 2012.11.19 2652
181 교양 '노처녀가' MBC 스페셜 최초 모큐멘터리 기법 사용 비지 2011.07.16 2639
180 사설 “기자님, ‘네티즌 반응’은 왜 쓰나요?” MoA 2014.03.30 2629
179 시사 5·18민주화운동(광주민주화운동)에 대한 폄훼의 진실 MoA 2014.05.20 2625
178 IT 저작권이 프리한 이모티콘 다운 받는 사이트 MoA 2015.08.23 2624
177 IT 왜 나는 키보드에 열광하는가 Naya 2011.08.30 2622
176 과학 게이머들, 3주 만에 에이즈 "암 등 난치병 실마리 찾아 너울 2011.09.20 2620
Board Pagination Prev 1 ... 6 7 8 9 10 11 12 13 14 15 ... 20 Next
/ 20