로그인

검색

조회 수 7200 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

http://www.algorithmist.net/technotes.html

 

Computational Geometry

Focusing primarily on interactive creation and display of two-dimensional curves, I hope this series illustrates that Flash is a valuable tool in teaching computational geometry. Each TechNote below opens in a new browser window.

:: Natural Cubic Splines - Natural and parametric cubic splines.

:: Hermite Curves - Cubic Hermite curves.

:: Quadratic Beizer Curves - Quadratic Beizer's and MovieClip.curveTo().

:: Cubic Bezier Curves - Cubic Bezier's and introduction to quadratic approximation.

:: Catmull-Rom Splines - An introduction to Catmull-Rom Splines.

:: Arc Length of a Catmull-Rom Spline - Arc Length of parametric curves and derivative evaluation, applied to Catmull-Rom splines.

:: Curve-Constrained Scrolling Via Script - Parametric Quadratic and Piecewise Hermite curves applied to curve-constrained scroll indicators.

:: Arc-Length Parameterization - Introduction to curve parameterization and how to reparameterize a curve on arc length. Techniques applied to a Catmull-Rom spline. Examples include how to distribute sprites evenly along a curve and path animation (including path following and orientation).

:: Recursive Subdivision - Splitting a cubic Bezier curve into multiple equivalent, but smaller segments. Several subdivision approaches are discussed with the ultimate goal of pairing a fast subdivision with a piecewise cubic Bezier spline.

:: Composite Bezier Curves - Constructing a piecewise cubic Bezier curve that interpolates a set of knots with G-1 continuity and tension control. Optimized for fast drawing.

Online Demos

These interactive demos illustrate various concepts in applied mathematics. Most initial examples are from the field of computational geometry. All demos required the Flash 9 player.

:: Parameterization Demo - Illustrate the difference bewteen uniform and arc-length parameterization on a cubic Bezier spline.

::Quadratic Bezier Parameterization - illustrates the difference in natural vs arc-length parameterization for a simple quadratic Bezier curve.

::Quad. Bezier, 3-point interpolation - The classic formula familiar to many Flash programmers is actually a simplified version of a more general parameterization, called 'midpoint' parameterization or 'midpoint interpolation'. The more general formula is discussed in the Cubic Bezier TechNote. This demo illustrates the difference between midpoint, chord-length, and arbitrary parameterizations.

::Catmull-Rom Spline animation - a simple example illustrating the animation of a Catmull-Rom spline from beginning to end, as if it were being drawn by hand. Also a subtle introduction to spline parameterization.

::Closed-Loop Catmull-Rom spline - a simple method for setting outer control points for a smooth, continuous-loop Catmull-Rom spline.

::Path Animation with Papervision 3D - a simple demo illustrating path animation with Papervision 3D and the 3D Catmull-Rom spline.

::Lemniscate of Bernoulli - how to use a closed-loop Catmull-Rom spline to animate sprites around a Lemniscate of Bernoulli (infinity or fiture-8 shape).

::Papervision 3D Figure-8's- builds upon the 2D Lemniscate of Bernoulli example to animate markers along figure-8 paths in the XY, XZ, and YZ planes.

::Papervision 3D Path Animation from 3ds max - uses spline data exported from 3ds max (in XML) and the Singularity 3D Bezier spline for path animation in Papervision 3D.

::Quadratic Bezier y at x - computes (t,y) values along a quadratic Bezier curve at a given x-coordinate.

::Cubic Bezier y at x - computes (t,y) values along a cubic Bezier curve at a given x-coordinate.

::Closest Point on Cubic - closest point on a cubic Bezier to an arbitrary point (port of class Graphic Gem algorithm).

::Closest Point on Quadratic - closest point on a quadratic Bezier to an arbitrary point (Graphic Gem algorithm generalized to work with quads or cubics).

::Easing Along a Cubic Bezier Curve- Penner easing functions applied to easing along a parametric curve. Another practical application of arc-length parameterization.

::Cubic Bezier 4-point Interpolation-Interpolating four points with a cubic Bezier curve.

?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
204 IT 첨단 IT서비스 모아레 2010.02.15 3963
203 IT 내 비밀번호는 얼마나 안전한가 MoA 2013.03.14 3954
202 IT TI eZ430 (Programmable watch) Naya 2012.04.06 3951
201 교양 동양인과 서양인의 차이 모아레 2009.12.16 3942
200 시사 서울대 법대 수석 천재 혹은 수재의 명과 암 Naya 2012.04.18 3941
199 교양 Make a Forest 비지 2011.07.06 3940
198 교양 이뇨작용에 탁월한 차는 어떤게 있나요? MoA 2014.04.23 3930
197 교양 당신은 개를 키우면 안된다 file MoA 2014.02.16 3928
196 교양 토스 PO 세션 1~7편 총 정리 OBG 2024.04.26 3920
195 IT 카카오톡 해킹, 진실은? 모아레 2011.01.08 3915
194 과학 인류가 다시 달에 가야하는 이유 OBG 2022.06.10 3908
193 IT Windows에서 Webdav Access 속도가 느릴 때 MoA 2013.10.01 3905
192 교양 EBS 지식채널e - 세계 1위 (대학 등록금...) 비지 2011.07.03 3899
191 IT 레인미터 설치법/사용법/스킨 OBG 2024.09.16 3897
190 IT 부기보드 Naya 2011.10.05 3897
189 투자 배당 줄이고 자사주 소각 금지하라고? 1 OBG 2021.11.01 3894
188 IT 플래시 html간의 통신 모아레 2009.02.10 3894
187 과학 게이머들, 3주 만에 에이즈 "암 등 난치병 실마리 찾아 너울 2011.09.20 3893
186 IT 아이폰으로 활용하고 있는 수많은 기능들 정리 모아레 2010.08.11 3893
185 교양 당신이 쓰는 휴지, 안전합니까? MoA 2014.04.23 3884
Board Pagination Prev 1 ... 6 7 8 9 10 11 12 13 14 15 ... 21 Next
/ 21