로그인

검색

조회 수 3618 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

http://www.algorithmist.net/technotes.html

 

Computational Geometry

Focusing primarily on interactive creation and display of two-dimensional curves, I hope this series illustrates that Flash is a valuable tool in teaching computational geometry. Each TechNote below opens in a new browser window.

:: Natural Cubic Splines - Natural and parametric cubic splines.

:: Hermite Curves - Cubic Hermite curves.

:: Quadratic Beizer Curves - Quadratic Beizer's and MovieClip.curveTo().

:: Cubic Bezier Curves - Cubic Bezier's and introduction to quadratic approximation.

:: Catmull-Rom Splines - An introduction to Catmull-Rom Splines.

:: Arc Length of a Catmull-Rom Spline - Arc Length of parametric curves and derivative evaluation, applied to Catmull-Rom splines.

:: Curve-Constrained Scrolling Via Script - Parametric Quadratic and Piecewise Hermite curves applied to curve-constrained scroll indicators.

:: Arc-Length Parameterization - Introduction to curve parameterization and how to reparameterize a curve on arc length. Techniques applied to a Catmull-Rom spline. Examples include how to distribute sprites evenly along a curve and path animation (including path following and orientation).

:: Recursive Subdivision - Splitting a cubic Bezier curve into multiple equivalent, but smaller segments. Several subdivision approaches are discussed with the ultimate goal of pairing a fast subdivision with a piecewise cubic Bezier spline.

:: Composite Bezier Curves - Constructing a piecewise cubic Bezier curve that interpolates a set of knots with G-1 continuity and tension control. Optimized for fast drawing.

Online Demos

These interactive demos illustrate various concepts in applied mathematics. Most initial examples are from the field of computational geometry. All demos required the Flash 9 player.

:: Parameterization Demo - Illustrate the difference bewteen uniform and arc-length parameterization on a cubic Bezier spline.

::Quadratic Bezier Parameterization - illustrates the difference in natural vs arc-length parameterization for a simple quadratic Bezier curve.

::Quad. Bezier, 3-point interpolation - The classic formula familiar to many Flash programmers is actually a simplified version of a more general parameterization, called 'midpoint' parameterization or 'midpoint interpolation'. The more general formula is discussed in the Cubic Bezier TechNote. This demo illustrates the difference between midpoint, chord-length, and arbitrary parameterizations.

::Catmull-Rom Spline animation - a simple example illustrating the animation of a Catmull-Rom spline from beginning to end, as if it were being drawn by hand. Also a subtle introduction to spline parameterization.

::Closed-Loop Catmull-Rom spline - a simple method for setting outer control points for a smooth, continuous-loop Catmull-Rom spline.

::Path Animation with Papervision 3D - a simple demo illustrating path animation with Papervision 3D and the 3D Catmull-Rom spline.

::Lemniscate of Bernoulli - how to use a closed-loop Catmull-Rom spline to animate sprites around a Lemniscate of Bernoulli (infinity or fiture-8 shape).

::Papervision 3D Figure-8's- builds upon the 2D Lemniscate of Bernoulli example to animate markers along figure-8 paths in the XY, XZ, and YZ planes.

::Papervision 3D Path Animation from 3ds max - uses spline data exported from 3ds max (in XML) and the Singularity 3D Bezier spline for path animation in Papervision 3D.

::Quadratic Bezier y at x - computes (t,y) values along a quadratic Bezier curve at a given x-coordinate.

::Cubic Bezier y at x - computes (t,y) values along a cubic Bezier curve at a given x-coordinate.

::Closest Point on Cubic - closest point on a cubic Bezier to an arbitrary point (port of class Graphic Gem algorithm).

::Closest Point on Quadratic - closest point on a quadratic Bezier to an arbitrary point (Graphic Gem algorithm generalized to work with quads or cubics).

::Easing Along a Cubic Bezier Curve- Penner easing functions applied to easing along a parametric curve. Another practical application of arc-length parameterization.

::Cubic Bezier 4-point Interpolation-Interpolating four points with a cubic Bezier curve.

?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
53 교양 코코아 매스 & 코코아 버터 모아레 2010.04.10 2843
52 교양 콩 많이 먹으면 남자에겐 부작용이...? MoA 2013.08.12 2907
51 투자 쿠팡은 왜 적자를 탈출할 수 없는걸까? OBG 2022.11.10 1332
50 IT 타입커버 업데이트 및 Fn 키 동작 MoA 2013.12.04 3604
49 IT 탐색기에서 보기 기본설정을 아이콘으로 바꾸는 방법 모아레 2009.03.13 2517
48 과학 태풍 두가지 오해 Naya 2012.08.27 2867
47 교양 터키 수도가 앙카라로 된 이유는? 모아레 2010.04.23 2927
46 IT 텍스트큐브 관리자로그인 관련 모아레 2009.03.22 2548
45 교양 토스 PO 세션 1~7편 총 정리 OBG 2024.04.26 2146
44 IT 토스, 6개월간 사기 송금 피해 15만건 막았다 OBG 2022.12.09 1469
43 투자 투자 구루들의 포트폴리오 사이트 OBG 2024.01.24 1634
42 IT 트래킹과 타게팅의 종말, 이후 디지털 마케팅은? OBG 2021.08.27 1808
41 투자 티메프 사태, 핵심은 금융과 비금융의 분리다. OBG 2024.08.05 1732
40 교양 파이썬 기반 금융 인공지능 책 리뷰 OBG 2024.10.08 2545
39 IT 팝업창 허용 MoA 2005.12.12 2049
38 IT 페이스북 '알만한 사람' 어떻게 알아낼까? Naya 2011.11.26 4237
37 사설 페이스북과 싸이월드가 달라진 그때 비지 2011.05.08 1995
36 IT 페이스북은 어떻게 개발하고 배포할까? MoA 2015.09.25 3564
35 교양 편의점 삼각김밥은 왜 삼각형이 됐나? Naya 2011.08.20 2853
34 IT 포토샵 간단 강좌 모아레 2009.08.17 2313
Board Pagination Prev 1 ... 11 12 13 14 15 16 17 18 19 20 Next
/ 20