로그인

검색

조회 수 3600 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

http://www.algorithmist.net/technotes.html

 

Computational Geometry

Focusing primarily on interactive creation and display of two-dimensional curves, I hope this series illustrates that Flash is a valuable tool in teaching computational geometry. Each TechNote below opens in a new browser window.

:: Natural Cubic Splines - Natural and parametric cubic splines.

:: Hermite Curves - Cubic Hermite curves.

:: Quadratic Beizer Curves - Quadratic Beizer's and MovieClip.curveTo().

:: Cubic Bezier Curves - Cubic Bezier's and introduction to quadratic approximation.

:: Catmull-Rom Splines - An introduction to Catmull-Rom Splines.

:: Arc Length of a Catmull-Rom Spline - Arc Length of parametric curves and derivative evaluation, applied to Catmull-Rom splines.

:: Curve-Constrained Scrolling Via Script - Parametric Quadratic and Piecewise Hermite curves applied to curve-constrained scroll indicators.

:: Arc-Length Parameterization - Introduction to curve parameterization and how to reparameterize a curve on arc length. Techniques applied to a Catmull-Rom spline. Examples include how to distribute sprites evenly along a curve and path animation (including path following and orientation).

:: Recursive Subdivision - Splitting a cubic Bezier curve into multiple equivalent, but smaller segments. Several subdivision approaches are discussed with the ultimate goal of pairing a fast subdivision with a piecewise cubic Bezier spline.

:: Composite Bezier Curves - Constructing a piecewise cubic Bezier curve that interpolates a set of knots with G-1 continuity and tension control. Optimized for fast drawing.

Online Demos

These interactive demos illustrate various concepts in applied mathematics. Most initial examples are from the field of computational geometry. All demos required the Flash 9 player.

:: Parameterization Demo - Illustrate the difference bewteen uniform and arc-length parameterization on a cubic Bezier spline.

::Quadratic Bezier Parameterization - illustrates the difference in natural vs arc-length parameterization for a simple quadratic Bezier curve.

::Quad. Bezier, 3-point interpolation - The classic formula familiar to many Flash programmers is actually a simplified version of a more general parameterization, called 'midpoint' parameterization or 'midpoint interpolation'. The more general formula is discussed in the Cubic Bezier TechNote. This demo illustrates the difference between midpoint, chord-length, and arbitrary parameterizations.

::Catmull-Rom Spline animation - a simple example illustrating the animation of a Catmull-Rom spline from beginning to end, as if it were being drawn by hand. Also a subtle introduction to spline parameterization.

::Closed-Loop Catmull-Rom spline - a simple method for setting outer control points for a smooth, continuous-loop Catmull-Rom spline.

::Path Animation with Papervision 3D - a simple demo illustrating path animation with Papervision 3D and the 3D Catmull-Rom spline.

::Lemniscate of Bernoulli - how to use a closed-loop Catmull-Rom spline to animate sprites around a Lemniscate of Bernoulli (infinity or fiture-8 shape).

::Papervision 3D Figure-8's- builds upon the 2D Lemniscate of Bernoulli example to animate markers along figure-8 paths in the XY, XZ, and YZ planes.

::Papervision 3D Path Animation from 3ds max - uses spline data exported from 3ds max (in XML) and the Singularity 3D Bezier spline for path animation in Papervision 3D.

::Quadratic Bezier y at x - computes (t,y) values along a quadratic Bezier curve at a given x-coordinate.

::Cubic Bezier y at x - computes (t,y) values along a cubic Bezier curve at a given x-coordinate.

::Closest Point on Cubic - closest point on a cubic Bezier to an arbitrary point (port of class Graphic Gem algorithm).

::Closest Point on Quadratic - closest point on a quadratic Bezier to an arbitrary point (Graphic Gem algorithm generalized to work with quads or cubics).

::Easing Along a Cubic Bezier Curve- Penner easing functions applied to easing along a parametric curve. Another practical application of arc-length parameterization.

::Cubic Bezier 4-point Interpolation-Interpolating four points with a cubic Bezier curve.

?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
112 IT 윈도우 10 클린 인스톨하는 방법 MoA 2015.07.30 3035
111 교양 단정한 현대 남성정장 착용법 file MoA 2014.05.06 3038
110 IT 리눅스 서버 운영 초보자를 위한 북마크 모아레 2009.07.28 3042
109 IT 마이크로소프트, 윈도 폰 7 시리즈 공식 발표 모아레 2010.02.16 3044
108 과학 나사에서 공개한 4.3기가 사진.jpg MoA 2015.08.06 3044
107 IT Windows RC? RTM이 뭐야? 모아레 2009.07.19 3057
106 IT 윈도우 7 - 남들이 잘 모르는 몇가지 팁 모아레 2009.10.30 3058
105 과학 물리관련사이트 정리 MoA 2007.03.08 3062
104 IT 차세대 웹의 특징, "황금의 삼각형" 모아레 2010.11.27 3078
103 IT Windows 8 메트로 UI를 마우스와 키보드로 제어하는 소개 영상 너울 2012.05.14 3109
102 IT 플래시 폰트 임베드하는법 MoA 2006.08.24 3112
101 IT 모질라 썬더버드(Thunderbird) 백업과 복구 모아레 2010.06.20 3128
100 IT 리눅스 탄생 20주년 Naya 2011.08.26 3132
99 IT 아이콘 모음 너울 2012.03.28 3136
98 IT 원격 데스크톱 설정 모아레 2009.07.15 3138
97 과학 Why do wires get tangled up? 모아레 2010.05.15 3144
96 IT 아이폰 크랙어플 다운 사이트 모아레 2010.11.11 3149
95 IT FortiClient Unable to receive SSL VPN tunnel IP address (-30) 에러 해결 OBG 2022.06.08 3153
94 IT 윈도우7 FTP 설정 (방화벽 관련) 비지 2011.05.05 3155
93 IT 간단한 gcc + Makefile 사용법 모아레 2010.10.10 3157
Board Pagination Prev 1 ... 10 11 12 13 14 15 16 17 18 19 20 Next
/ 20