로그인

검색

조회 수 7200 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

http://www.algorithmist.net/technotes.html

 

Computational Geometry

Focusing primarily on interactive creation and display of two-dimensional curves, I hope this series illustrates that Flash is a valuable tool in teaching computational geometry. Each TechNote below opens in a new browser window.

:: Natural Cubic Splines - Natural and parametric cubic splines.

:: Hermite Curves - Cubic Hermite curves.

:: Quadratic Beizer Curves - Quadratic Beizer's and MovieClip.curveTo().

:: Cubic Bezier Curves - Cubic Bezier's and introduction to quadratic approximation.

:: Catmull-Rom Splines - An introduction to Catmull-Rom Splines.

:: Arc Length of a Catmull-Rom Spline - Arc Length of parametric curves and derivative evaluation, applied to Catmull-Rom splines.

:: Curve-Constrained Scrolling Via Script - Parametric Quadratic and Piecewise Hermite curves applied to curve-constrained scroll indicators.

:: Arc-Length Parameterization - Introduction to curve parameterization and how to reparameterize a curve on arc length. Techniques applied to a Catmull-Rom spline. Examples include how to distribute sprites evenly along a curve and path animation (including path following and orientation).

:: Recursive Subdivision - Splitting a cubic Bezier curve into multiple equivalent, but smaller segments. Several subdivision approaches are discussed with the ultimate goal of pairing a fast subdivision with a piecewise cubic Bezier spline.

:: Composite Bezier Curves - Constructing a piecewise cubic Bezier curve that interpolates a set of knots with G-1 continuity and tension control. Optimized for fast drawing.

Online Demos

These interactive demos illustrate various concepts in applied mathematics. Most initial examples are from the field of computational geometry. All demos required the Flash 9 player.

:: Parameterization Demo - Illustrate the difference bewteen uniform and arc-length parameterization on a cubic Bezier spline.

::Quadratic Bezier Parameterization - illustrates the difference in natural vs arc-length parameterization for a simple quadratic Bezier curve.

::Quad. Bezier, 3-point interpolation - The classic formula familiar to many Flash programmers is actually a simplified version of a more general parameterization, called 'midpoint' parameterization or 'midpoint interpolation'. The more general formula is discussed in the Cubic Bezier TechNote. This demo illustrates the difference between midpoint, chord-length, and arbitrary parameterizations.

::Catmull-Rom Spline animation - a simple example illustrating the animation of a Catmull-Rom spline from beginning to end, as if it were being drawn by hand. Also a subtle introduction to spline parameterization.

::Closed-Loop Catmull-Rom spline - a simple method for setting outer control points for a smooth, continuous-loop Catmull-Rom spline.

::Path Animation with Papervision 3D - a simple demo illustrating path animation with Papervision 3D and the 3D Catmull-Rom spline.

::Lemniscate of Bernoulli - how to use a closed-loop Catmull-Rom spline to animate sprites around a Lemniscate of Bernoulli (infinity or fiture-8 shape).

::Papervision 3D Figure-8's- builds upon the 2D Lemniscate of Bernoulli example to animate markers along figure-8 paths in the XY, XZ, and YZ planes.

::Papervision 3D Path Animation from 3ds max - uses spline data exported from 3ds max (in XML) and the Singularity 3D Bezier spline for path animation in Papervision 3D.

::Quadratic Bezier y at x - computes (t,y) values along a quadratic Bezier curve at a given x-coordinate.

::Cubic Bezier y at x - computes (t,y) values along a cubic Bezier curve at a given x-coordinate.

::Closest Point on Cubic - closest point on a cubic Bezier to an arbitrary point (port of class Graphic Gem algorithm).

::Closest Point on Quadratic - closest point on a quadratic Bezier to an arbitrary point (Graphic Gem algorithm generalized to work with quads or cubics).

::Easing Along a Cubic Bezier Curve- Penner easing functions applied to easing along a parametric curve. Another practical application of arc-length parameterization.

::Cubic Bezier 4-point Interpolation-Interpolating four points with a cubic Bezier curve.

?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
124 IT 수십만원대 최고급 HDMI 케이블 알고보니… 너울 2011.09.14 4175
123 IT Windows 8: pictures, video, and a hands-on preview of the developer build 너울 2011.09.14 5235
122 IT 아이폰4 카메라 vs 니콘 D40 비교 너울 2011.08.29 5175
121 IT iPhone(iOS) 이해 너울 2011.08.29 4385
120 IT dts로 릴된 영화 작은 소리 확실하게 증폭해서 듣는방법 너울 2011.08.16 4899
119 IT 내 생애 처음 만난 럭셔리 PC, 어떤 점이 다를까? 너울 2011.08.16 4206
118 과학 힉스 입자 내년 6월까지 찾는다 비지 2011.07.16 3765
117 IT 프로그래머/개발자에 대한 속담과 격언 비지 2011.07.15 7037
116 IT ie9에서 플래시가 왼쪽 위에 모여 보이는 경우 비지 2011.05.26 4619
115 IT 고해상도 폰카, 왜 항상 2% 부족할까? 비지 2011.05.09 4023
114 과학 논문에 쓰이는 표현의 진실 비지 2011.05.08 4154
113 IT FTP서버 active, passive mode 비지 2011.05.05 6238
112 IT 윈도우7 FTP 설정 (방화벽 관련) 비지 2011.05.05 4722
111 IT 애플은 정말 나의 위치 정보를 털어갔나 모아레 2011.04.28 3483
110 IT 알툴즈 대체 프로그램 모아레 2011.03.27 3699
109 IT 아이폰 배터리 교체 모아레 2011.03.27 4346
108 IT 윈도우 7 - 용량 확보, 심볼릭 링크 모아레 2011.03.06 3567
107 IT 스마트폰, 퍼스널 컴퓨팅의 중심에 서다 모아레 2011.01.28 4126
106 IT 스티브 잡스는 ‘현실’기반의 보수적 혁신가 모아레 2011.01.24 4497
105 IT 이음과 해체의 무한 변주, ‘쿼라’의 완결성 모아레 2011.01.22 4675
Board Pagination Prev 1 ... 10 11 12 13 14 15 16 17 18 19 ... 21 Next
/ 21