메뉴 건너뛰기

OBG

정보게시판

과학
2007.04.19 01:38

수학 기호

MoA
조회 수 2525 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄

Basic mathematical symbols

Symbol

Name

Explanation Examples
Should be read as

Category

=
equality x = y means x and y represent the same thing or value. 1 + 1 = 2
is equal to; equals
everywhere
Inequation xy means that x and y do not represent the same thing or value. 1 ≠ 2
is not equal to; does not equal
everywhere


Proportionality yx means that y = kx for some constant k. if y = 2x, then yx
is proportional to
everywhere
<

>
strict inequality x < y means x is less than y.

x > y means x is greater than y.
3 < 4
5 > 4
is less than, is greater than
order theory


inequality x ≤ y means x is less than or equal to y.

x ≥ y means x is greater than or equal to y.
3 ≤ 4 and 5 ≤ 5
5 ≥ 4 and 5 ≥ 5
is less than or equal to, is greater than or equal to
order theory
+
addition 4 + 6 means the sum of 4 and 6. 2 + 7 = 9
plus
arithmetic
disjoint union A1 + A2 means the disjoint union of sets A1 and A2. A1={1,2,3,4} ∧ A2={2,4,5,7} ⇒
A1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)}
the disjoint union of … and …
set theory
subtraction 9 − 4 means the subtraction of 4 from 9. 8 − 3 = 5
minus
arithmetic
negative sign −3 means the negative of the number 3. −(−5) = 5
negative ; minus
arithmetic
set-theoretic complement A − B means the set that contains all the elements of A that are not in B. {1,2,4} − {1,3,4}  =  {2}
minus; without
set theory
×
multiplication 3 × 4 means the multiplication of 3 by 4. 7 × 8 = 56
times
arithmetic
Cartesian product X×Y means the set of all ordered pairs with the first element of each pair selected from X and the second element selected from Y. {1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
the Cartesian product of … and …; the direct product of … and …
set theory
cross product u × v means the cross product of vectors u and v (1,2,5) × (3,4,−1) =
(−22, 16, − 2)
cross
vector algebra
÷

/
division 6 ÷ 3 or 6/3 means the division of 6 by 3. 2 ÷ 4 = .5

12/4 = 3
divided by
arithmetic
square root x means the positive number whose square is x. √4 = 2
the principal square root of; square root
real numbers
complex square root if z = r exp(iφ) is represented in polar coordinates with -π < φ ≤ π, then √z = √r exp(iφ/2). √(-1) = i
the complex square root of; square root
complex numbers
| |
absolute value |x| means the distance in the real line (or the complex plane) between x and zero. |3| = 3, |-5| = |5|
|i| = 1, |3+4i| = 5
absolute value of
numbers
!
factorial n! is the product 1×2×...×n. 4! = 1 × 2 × 3 × 4 = 24
factorial
combinatorics
~
probability distribution X ~ D, means the random variable X has the probability distribution D. X ~ N(0,1), the standard normal distribution
has distribution
statistics




material implication AB means if A is true then B is also true; if A is false then nothing is said about B.

→ may mean the same as ⇒, or it may have the meaning for
functions given below.

⊃ may mean the same as ⇒, or it may have the meaning for
superset given below.
x = 2  ⇒  x2 = 4 is true, but x2 = 4   ⇒  x = 2 is in general false (since x could be −2).
implies; if .. then
propositional logic


material equivalence A ⇔ B means A is true if B is true and A is false if B is false. x + 5 = y +2  ⇔  x + 3 = y
if and only if; iff
propositional logic
¬

˜
logical negation The statement ¬A is true if and only if A is false.

A slash placed through another operator is the same as "¬" placed in front.
¬(¬A) ⇔ A
x ≠ y  ⇔  ¬(x =  y)
not
propositional logic
logical conjunction or meet in a lattice The statement AB is true if A and B are both true; else it is false. n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number.
and
propositional logic, lattice theory
logical disjunction or join in a lattice The statement AB is true if A or B (or both) are true; if both are false, the statement is false. n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number.
or
propositional logic, lattice theory



exclusive or The statement AB is true when either A or B, but not both, are true. AB means the same. A) ⊕ A is always true, AA is always false.
xor
propositional logic, Boolean algebra
universal quantification ∀ x: P(x) means P(x) is true for all x. ∀ n ∈ N: n2 ≥ n.
for all; for any; for each
predicate logic
existential quantification ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ N: n is even.
there exists
predicate logic
∃!
uniqueness quantification ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ N: n + 5 = 2n.
there exists exactly one
predicate logic
:=



:⇔
definition x := y or x ≡ y means x is defined to be another name for y (but note that ≡ can also mean other things, such as congruence).

P :⇔ Q means P is defined to be logically equivalent to Q.
cosh x := (1/2)(exp x + exp (−x))

A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
is defined as
everywhere
{ , }
set brackets {a,b,c} means the set consisting of a, b, and c. N = {0,1,2,...}
the set of ...
set theory
{ : }

{ | }
set builder notation {x : P(x)} means the set of all x for which P(x) is true. {x | P(x)} is the same as {x : P(x)}. {n ∈ N : n2 < 20} = {0,1,2,3,4}
the set of ... such that ...
set theory



{}
empty set means the set with no elements. {} means the same. {n ∈ N : 1 < n2 < 4} =
the empty set
set theory


set membership a ∈ S means a is an element of the set S; a  S means a is not an element of S. (1/2)−1 ∈ N

2−1  N
is an element of; is not an element of
everywhere, set theory


subset A ⊆ B means every element of A is also element of B.

A ⊂ B means A ⊆ B but A ≠ B.
A ∩ BA; Q ⊂ R
is a subset of
set theory


superset A ⊇ B means every element of B is also element of A.

A ⊃ B means A ⊇ B but A ≠ B.
A ∪ BB; R ⊃ Q
is a superset of
set theory
set-theoretic union A ∪ B means the set that contains all the elements from A and also all those from B, but no others. A ⊆ B  ⇔  A ∪ B = B
the union of ... and ...; union
set theory
set-theoretic intersection A ∩ B means the set that contains all those elements that A and B have in common. {x ∈ R : x2 = 1} ∩ N = {1}
intersected with; intersect
set theory
set-theoretic complement A  B means the set that contains all those elements of A that are not in B. {1,2,3,4} {3,4,5,6} = {1,2}
minus; without
set theory
( )
function application f(x) means the value of the function f at the element x. If f(x) := x2, then f(3) = 32 = 9.
of
set theory
precedence grouping Perform the operations inside the parentheses first. (8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4.
everywhere
f:XY
function arrow fX → Y means the function f maps the set X into the set Y. Let fZ → N be defined by f(x) = x2.
from ... to
set theory
o
function composition fog is the function, such that (fog)(x) = f(g(x)). if f(x) = 2x, and g(x) = x + 3, then (fog)(x) = 2(x + 3).
composed with
set theory

N

natural numbers N means {0,1,2,3,...}, but see the article on natural numbers for a different convention. {|a| : a ∈ Z} = N
N
numbers

Z

integers Z means {...,−3,−2,−1,0,1,2,3,...}. {a : |a| ∈ N} = Z
Z
numbers

Q

rational numbers Q means {p/q : p,q ∈ Z, q ≠ 0}. 3.14 ∈ Q

π ∉ Q
Q
numbers

R

real numbers R means the set of real numbers. π ∈ R

√(−1) ∉ R
R
numbers

C

complex numbers C means {a + bi : a,b ∈ R}. i = √(−1) ∈ C
C
numbers
infinity ∞ is an element of the extended number line that is greater than all real numbers; it often occurs in limits. limx→0 1/|x| = ∞
infinity
numbers
π
pi π means the ratio of a circle's circumference to its diameter. Its value is 3.1415.... A = πr² is the area of a circle with radius r
pi
Euclidean geometry
|| ||
norm ||x|| is the norm of the element x of a normed vector space. ||x+y|| ≤ ||x|| + ||y||
norm of; length of
linear algebra
summation k=1n ak means a1 + a2 + ... + an. k=14 k2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30
sum over ... from ... to ... of
arithmetic
product k=1n ak means a1a2···an. k=14 (k + 2) = (1  + 2)(2 + 2)(3 + 2)(4 + 2) = 3 × 4 × 5 × 6 = 360
product over ... from ... to ... of
arithmetic
Cartesian product i=0nYi means the set of all (n+1)-tuples (y0,...,yn). n=13R = Rn
the Cartesian product of; the direct product of
set theory
'
derivative f '(x) is the derivative of the function f at the point x, i.e., the slope of the tangent there. If f(x) = x2, then f '(x) = 2x
… prime; derivative of …
calculus
indefinite integral or antiderivative ∫ f(x) dx means a function whose derivative is f. x2 dx = x3/3 + C
indefinite integral of …; the antiderivative of …
calculus
definite integral ab f(x) dx means the signed area between the x-axis and the graph of the function f between x = a and x = b. 0b x2  dx = b3/3;
integral from ... to ... of ... with respect to
calculus
gradient f (x1, …, xn) is the vector of partial derivatives (df / dx1, …, df / dxn). If f (x,y,z) = 3xy + z² then ∇f = (3y, 3x, 2z)
del, nabla, gradient of
calculus
partial derivative With f (x1, …, xn), ∂f/∂xi is the derivative of f with respect to xi, with all other variables kept constant. If f(x,y) = x2y, then ∂f/∂x = 2xy
partial derivative of
calculus
boundary M means the boundary of M ∂{x : ||x|| ≤ 2} =
{x : || x || = 2}
boundary of
topology
perpendicular xy means x is perpendicular to y; or more generally x is orthogonal to y. If lm and mn then l || n.
is perpendicular to
geometry
bottom element x = ⊥ means x is the smallest element. x : x ∧ ⊥ = ⊥
the bottom element
lattice theory
entailment AB means the sentence A entails the sentence B, that is every model in which A is true, B is also true. AA ∨ ¬A
entails
model theory
inference xy means y is derived from x. AB ⊢ ¬B → ¬A
infers or is derived from
propositional logic, predicate logic
normal subgroup NG means that N is a normal subgroup of group G. Z(G) ◅ G
is a normal subgroup of
group theory
/
quotient group

G/H means the quotient of group G modulo its subgroup H.

{0, a, 2a, b, b+a, b+2a} / {0, b} = {{0, b}, {a, b+a}, {2a, b+2a}}
mod
group theory
isomorphism GH means that group G is isomorphic to group H Q / {1, −1} ≈ V,
where Q is the
quaternion group and V is the Klein four-group.
is isomorphic to
group theory
approximately equal xy means x is approximately equaly to y π ≈ 3.14159
is approximately equal to
everywhere


tensor product VU means the tensor product of V and U. {1, 2, 3, 4} ⊗ {1,1,1} =
{{1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4}}
tensor product of
linear algebra
?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
172 시사 서울대 75학번이 박원순후보 학력 위조(?) 실체를 밝힌다 Naya 2011.10.14 540
171 교양 구글 입사 시험문제..? Naya 2011.10.08 422
170 IT 부기보드 Naya 2011.10.05 281
169 과학 게이머들, 3주 만에 에이즈 "암 등 난치병 실마리 찾아 너울 2011.09.20 357
168 IT 삼성 슬레이트PC 시리즈7 - 아이패드2와 경쟁할 태블릿, 윈도우 7 (또는 윈도우 8) Naya 2011.09.17 417
167 IT 인텔, 무선 디스플레이(와이다이) 기술 실용화 발표 너울 2011.09.15 306
166 IT 수십만원대 최고급 HDMI 케이블 알고보니… 너울 2011.09.14 305
165 IT Windows 8: pictures, video, and a hands-on preview of the developer build 너울 2011.09.14 1042
164 IT 휘어지는 AMOLED 디스플레이 Naya 2011.09.02 280
163 교양 샥스핀.jpg Naya 2011.08.31 263
162 IT 왜 나는 키보드에 열광하는가 Naya 2011.08.30 337
161 IT 아이폰4 카메라 vs 니콘 D40 비교 너울 2011.08.29 564
160 IT iPhone(iOS) 이해 너울 2011.08.29 339
159 IT 리눅스 탄생 20주년 Naya 2011.08.26 266
158 시사 무상급식은 부자급식이 결코 아니다 Naya 2011.08.22 277
157 시사 카다피의 일생에 관하여 Naya 2011.08.22 272
156 교양 편의점 삼각김밥은 왜 삼각형이 됐나? Naya 2011.08.20 439
155 시사 현직 PD가 말하는 '한예슬과 촬영하기' Naya 2011.08.18 297
154 IT dts로 릴된 영화 작은 소리 확실하게 증폭해서 듣는방법 너울 2011.08.16 470
153 IT 내 생애 처음 만난 럭셔리 PC, 어떤 점이 다를까? 너울 2011.08.16 324
Board Pagination Prev 1 ... 6 7 8 9 10 11 12 13 14 15 ... 19 Next
/ 19
위로