로그인

검색

과학
2007.04.19 01:38

수학 기호

MoA
조회 수 3722 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 게시글 수정 내역 댓글로 가기 인쇄

Basic mathematical symbols

Symbol

Name

Explanation Examples
Should be read as

Category

=
equality x = y means x and y represent the same thing or value. 1 + 1 = 2
is equal to; equals
everywhere
Inequation xy means that x and y do not represent the same thing or value. 1 ≠ 2
is not equal to; does not equal
everywhere


Proportionality yx means that y = kx for some constant k. if y = 2x, then yx
is proportional to
everywhere
<

>
strict inequality x < y means x is less than y.

x > y means x is greater than y.
3 < 4
5 > 4
is less than, is greater than
order theory


inequality x ≤ y means x is less than or equal to y.

x ≥ y means x is greater than or equal to y.
3 ≤ 4 and 5 ≤ 5
5 ≥ 4 and 5 ≥ 5
is less than or equal to, is greater than or equal to
order theory
+
addition 4 + 6 means the sum of 4 and 6. 2 + 7 = 9
plus
arithmetic
disjoint union A1 + A2 means the disjoint union of sets A1 and A2. A1={1,2,3,4} ∧ A2={2,4,5,7} ⇒
A1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)}
the disjoint union of … and …
set theory
subtraction 9 − 4 means the subtraction of 4 from 9. 8 − 3 = 5
minus
arithmetic
negative sign −3 means the negative of the number 3. −(−5) = 5
negative ; minus
arithmetic
set-theoretic complement A − B means the set that contains all the elements of A that are not in B. {1,2,4} − {1,3,4}  =  {2}
minus; without
set theory
×
multiplication 3 × 4 means the multiplication of 3 by 4. 7 × 8 = 56
times
arithmetic
Cartesian product X×Y means the set of all ordered pairs with the first element of each pair selected from X and the second element selected from Y. {1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
the Cartesian product of … and …; the direct product of … and …
set theory
cross product u × v means the cross product of vectors u and v (1,2,5) × (3,4,−1) =
(−22, 16, − 2)
cross
vector algebra
÷

/
division 6 ÷ 3 or 6/3 means the division of 6 by 3. 2 ÷ 4 = .5

12/4 = 3
divided by
arithmetic
square root x means the positive number whose square is x. √4 = 2
the principal square root of; square root
real numbers
complex square root if z = r exp(iφ) is represented in polar coordinates with -π < φ ≤ π, then √z = √r exp(iφ/2). √(-1) = i
the complex square root of; square root
complex numbers
| |
absolute value |x| means the distance in the real line (or the complex plane) between x and zero. |3| = 3, |-5| = |5|
|i| = 1, |3+4i| = 5
absolute value of
numbers
!
factorial n! is the product 1×2×...×n. 4! = 1 × 2 × 3 × 4 = 24
factorial
combinatorics
~
probability distribution X ~ D, means the random variable X has the probability distribution D. X ~ N(0,1), the standard normal distribution
has distribution
statistics




material implication AB means if A is true then B is also true; if A is false then nothing is said about B.

→ may mean the same as ⇒, or it may have the meaning for
functions given below.

⊃ may mean the same as ⇒, or it may have the meaning for
superset given below.
x = 2  ⇒  x2 = 4 is true, but x2 = 4   ⇒  x = 2 is in general false (since x could be −2).
implies; if .. then
propositional logic


material equivalence A ⇔ B means A is true if B is true and A is false if B is false. x + 5 = y +2  ⇔  x + 3 = y
if and only if; iff
propositional logic
¬

˜
logical negation The statement ¬A is true if and only if A is false.

A slash placed through another operator is the same as "¬" placed in front.
¬(¬A) ⇔ A
x ≠ y  ⇔  ¬(x =  y)
not
propositional logic
logical conjunction or meet in a lattice The statement AB is true if A and B are both true; else it is false. n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number.
and
propositional logic, lattice theory
logical disjunction or join in a lattice The statement AB is true if A or B (or both) are true; if both are false, the statement is false. n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number.
or
propositional logic, lattice theory



exclusive or The statement AB is true when either A or B, but not both, are true. AB means the same. A) ⊕ A is always true, AA is always false.
xor
propositional logic, Boolean algebra
universal quantification ∀ x: P(x) means P(x) is true for all x. ∀ n ∈ N: n2 ≥ n.
for all; for any; for each
predicate logic
existential quantification ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ N: n is even.
there exists
predicate logic
∃!
uniqueness quantification ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ N: n + 5 = 2n.
there exists exactly one
predicate logic
:=



:⇔
definition x := y or x ≡ y means x is defined to be another name for y (but note that ≡ can also mean other things, such as congruence).

P :⇔ Q means P is defined to be logically equivalent to Q.
cosh x := (1/2)(exp x + exp (−x))

A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
is defined as
everywhere
{ , }
set brackets {a,b,c} means the set consisting of a, b, and c. N = {0,1,2,...}
the set of ...
set theory
{ : }

{ | }
set builder notation {x : P(x)} means the set of all x for which P(x) is true. {x | P(x)} is the same as {x : P(x)}. {n ∈ N : n2 < 20} = {0,1,2,3,4}
the set of ... such that ...
set theory



{}
empty set means the set with no elements. {} means the same. {n ∈ N : 1 < n2 < 4} =
the empty set
set theory


set membership a ∈ S means a is an element of the set S; a  S means a is not an element of S. (1/2)−1 ∈ N

2−1  N
is an element of; is not an element of
everywhere, set theory


subset A ⊆ B means every element of A is also element of B.

A ⊂ B means A ⊆ B but A ≠ B.
A ∩ BA; Q ⊂ R
is a subset of
set theory


superset A ⊇ B means every element of B is also element of A.

A ⊃ B means A ⊇ B but A ≠ B.
A ∪ BB; R ⊃ Q
is a superset of
set theory
set-theoretic union A ∪ B means the set that contains all the elements from A and also all those from B, but no others. A ⊆ B  ⇔  A ∪ B = B
the union of ... and ...; union
set theory
set-theoretic intersection A ∩ B means the set that contains all those elements that A and B have in common. {x ∈ R : x2 = 1} ∩ N = {1}
intersected with; intersect
set theory
set-theoretic complement A  B means the set that contains all those elements of A that are not in B. {1,2,3,4} {3,4,5,6} = {1,2}
minus; without
set theory
( )
function application f(x) means the value of the function f at the element x. If f(x) := x2, then f(3) = 32 = 9.
of
set theory
precedence grouping Perform the operations inside the parentheses first. (8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4.
everywhere
f:XY
function arrow fX → Y means the function f maps the set X into the set Y. Let fZ → N be defined by f(x) = x2.
from ... to
set theory
o
function composition fog is the function, such that (fog)(x) = f(g(x)). if f(x) = 2x, and g(x) = x + 3, then (fog)(x) = 2(x + 3).
composed with
set theory

N

natural numbers N means {0,1,2,3,...}, but see the article on natural numbers for a different convention. {|a| : a ∈ Z} = N
N
numbers

Z

integers Z means {...,−3,−2,−1,0,1,2,3,...}. {a : |a| ∈ N} = Z
Z
numbers

Q

rational numbers Q means {p/q : p,q ∈ Z, q ≠ 0}. 3.14 ∈ Q

π ∉ Q
Q
numbers

R

real numbers R means the set of real numbers. π ∈ R

√(−1) ∉ R
R
numbers

C

complex numbers C means {a + bi : a,b ∈ R}. i = √(−1) ∈ C
C
numbers
infinity ∞ is an element of the extended number line that is greater than all real numbers; it often occurs in limits. limx→0 1/|x| = ∞
infinity
numbers
π
pi π means the ratio of a circle's circumference to its diameter. Its value is 3.1415.... A = πr² is the area of a circle with radius r
pi
Euclidean geometry
|| ||
norm ||x|| is the norm of the element x of a normed vector space. ||x+y|| ≤ ||x|| + ||y||
norm of; length of
linear algebra
summation k=1n ak means a1 + a2 + ... + an. k=14 k2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30
sum over ... from ... to ... of
arithmetic
product k=1n ak means a1a2···an. k=14 (k + 2) = (1  + 2)(2 + 2)(3 + 2)(4 + 2) = 3 × 4 × 5 × 6 = 360
product over ... from ... to ... of
arithmetic
Cartesian product i=0nYi means the set of all (n+1)-tuples (y0,...,yn). n=13R = Rn
the Cartesian product of; the direct product of
set theory
'
derivative f '(x) is the derivative of the function f at the point x, i.e., the slope of the tangent there. If f(x) = x2, then f '(x) = 2x
… prime; derivative of …
calculus
indefinite integral or antiderivative ∫ f(x) dx means a function whose derivative is f. x2 dx = x3/3 + C
indefinite integral of …; the antiderivative of …
calculus
definite integral ab f(x) dx means the signed area between the x-axis and the graph of the function f between x = a and x = b. 0b x2  dx = b3/3;
integral from ... to ... of ... with respect to
calculus
gradient f (x1, …, xn) is the vector of partial derivatives (df / dx1, …, df / dxn). If f (x,y,z) = 3xy + z² then ∇f = (3y, 3x, 2z)
del, nabla, gradient of
calculus
partial derivative With f (x1, …, xn), ∂f/∂xi is the derivative of f with respect to xi, with all other variables kept constant. If f(x,y) = x2y, then ∂f/∂x = 2xy
partial derivative of
calculus
boundary M means the boundary of M ∂{x : ||x|| ≤ 2} =
{x : || x || = 2}
boundary of
topology
perpendicular xy means x is perpendicular to y; or more generally x is orthogonal to y. If lm and mn then l || n.
is perpendicular to
geometry
bottom element x = ⊥ means x is the smallest element. x : x ∧ ⊥ = ⊥
the bottom element
lattice theory
entailment AB means the sentence A entails the sentence B, that is every model in which A is true, B is also true. AA ∨ ¬A
entails
model theory
inference xy means y is derived from x. AB ⊢ ¬B → ¬A
infers or is derived from
propositional logic, predicate logic
normal subgroup NG means that N is a normal subgroup of group G. Z(G) ◅ G
is a normal subgroup of
group theory
/
quotient group

G/H means the quotient of group G modulo its subgroup H.

{0, a, 2a, b, b+a, b+2a} / {0, b} = {{0, b}, {a, b+a}, {2a, b+2a}}
mod
group theory
isomorphism GH means that group G is isomorphic to group H Q / {1, −1} ≈ V,
where Q is the
quaternion group and V is the Klein four-group.
is isomorphic to
group theory
approximately equal xy means x is approximately equaly to y π ≈ 3.14159
is approximately equal to
everywhere


tensor product VU means the tensor product of V and U. {1, 2, 3, 4} ⊗ {1,1,1} =
{{1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4}}
tensor product of
linear algebra
?

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
389 시사 국민연금 지속가능성 위해 자동조정장치 필요 OBG 2025.03.20 143
388 투자 주거지역에도 종류가 있다? 주거지역 종류와 차이점을 한눈에! OBG 2025.02.14 200
387 시사 내란죄 수사권·영장 논란 총정리 - 누구 말이 맞을까? OBG 2025.01.19 786
386 투자 엔비디아 매수하고 340배 만든 사람 OBG 2025.01.14 730
385 투자 'QuBit - P2QRH 지출 규칙'을 제안하는 비트코인 개선 제안서 (BIP-360, 양자 저항 암호) OBG 2024.12.29 778
384 투자 뚜레쥬르 창업비용 OBG 2024.12.10 505
383 투자 배당으로 제2의 월급통장? SCHD(슈드) 투자하는 방법 OBG 2024.11.26 541
382 IT 애플워치 클락콜로지(clockology) 설정방법 정리 OBG 2024.11.07 2905
381 할 피니, 최초의 비트코인 수령자 그리고 마지막 편지 OBG 2024.11.07 826
380 투자 BTS·블랙핑크 음반도 나를 通한다 (YG Plus) OBG 2024.10.23 940
379 IT 게임 리텐션 지표 개선 위한 전략 OBG 2024.10.15 1666
378 교양 파이썬 기반 금융 인공지능 책 리뷰 OBG 2024.10.08 1181
377 IT 레인미터 설치법/사용법/스킨 OBG 2024.09.16 1739
376 IT Apple ‘나의 찾기’ 네트워크, 2025년 봄 대한민국에 도입 OBG 2024.09.06 784
375 [23.11월 중장기 심층연구] 초저출산 및 초고령사회: 극단적 인구구조의 원인, 영향, 대책 - 한국은행 file OBG 2024.08.16 738
374 투자 티메프 사태, 핵심은 금융과 비금융의 분리다. OBG 2024.08.05 673
373 투자 부산대학교 앞 근황 ㄷㄷㄷㄷ.....jpg OBG 2024.07.16 555
372 교양 토스 PO 세션 1~7편 총 정리 OBG 2024.04.26 1567
371 투자 애플 온디바이스 AI 관련 OBG 2024.03.31 1834
370 교양 누군가를 당신의 전공 분야로 끌어들이게 해줄 책은? OBG 2024.03.30 1731
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 20 Next
/ 20